File size: 1,496 Bytes
8481d1b
 
c56158d
 
 
 
8481d1b
c56158d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
license: cc-by-4.0
language:
- ba
tags:
- grammatical-error-correction
---

This is a tiny BERT model for Bashkir, intended for fixing OCR errors.

Here is the code to run it (it uses a custom tokenizer, with the code downloaded in the runtime):
```Python
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer

MODEL_NAME = 'slone/bert-tiny-char-ctc-bak-denoise'
model = AutoModelForMaskedLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True, revision='194109')

def fix_text(text, verbose=False, spaces=2):
    with torch.inference_mode():
        batch = tokenizer(text, return_tensors='pt', spaces=spaces, padding=True, truncation=True, return_token_type_ids=False).to(model.device)
        logits = torch.log_softmax(model(**batch).logits, axis=-1)
    return tokenizer.decode(logits[0].argmax(-1), skip_special_tokens=True)

print(fix_text("Э Ҡаратау ҙы белмәйем."))
# Ә Ҡаратауҙы белмәйем.
```
The model works by: 
- inserting special characters (`spaces`) between each input character, 
- performing token classification (when for most tokens, predicted output equals input, but some may modify it), 
- and removing the special characters from the output.

It was trained on a parallel corpus (corrupted + fixed sentence) with CTC loss. 
On our test dataset, it reduces OCR errors by 41%.

Training details: in [this post](https://habr.com/ru/articles/744972/) (in Russian).