Translation
Transformers
PyTorch
Safetensors
mbart
text2text-generation
erzya
mordovian
Inference Endpoints
cointegrated commited on
Commit
89c5980
1 Parent(s): 485c05d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - myv
4
+ - ru
5
+ - fi
6
+ - de
7
+ - es
8
+ - en
9
+ - hi
10
+ - zh
11
+ - tr
12
+ - uk
13
+ - fr
14
+ - ar
15
+ tags:
16
+ - erzya
17
+ - mordovian
18
+ - fill-mask
19
+ - pretraining
20
+ - embeddings
21
+ - masked-lm
22
+ - feature-extraction
23
+ - sentence-similarity
24
+ license: cc-by-sa-4.0
25
+ datasets:
26
+ - slone/myv_ru_2022
27
+ - yhavinga/ccmatrix
28
+ ---
29
+
30
+ This a model to translate texts from the Erzya language (`myv`, cyrillic script) to 11 other languages: `ru,fi,de,es,en,hi,zh,tr,uk,fr,ar`.
31
+
32
+ It is described in the paper "The first neural machine translation system for the Erzya language".
33
+
34
+ This model is based on [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) ([license here](https://tfhub.dev/google/LaBSE/2)), but with updated vocabulary and checkpoint:
35
+ - Added an extra language token `myv_XX` and 19K new BPE tokens for the Erzya language;
36
+ - Fine-tuned to translate to Erzya: first from Russian, then from all 11 languages.
37
+
38
+ The following code can be used to run translation using the model
39
+
40
+ ```Python
41
+ from transformers import MBartForConditionalGeneration, MBart50Tokenizer
42
+
43
+
44
+ def fix_tokenizer(tokenizer):
45
+ """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
46
+ old_len = len(tokenizer) - int('myv_XX' in tokenizer.added_tokens_encoder)
47
+ tokenizer.lang_code_to_id['myv_XX'] = old_len-1
48
+ tokenizer.id_to_lang_code[old_len-1] = 'myv_XX'
49
+ tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
50
+
51
+ tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
52
+ tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
53
+ if 'myv_XX' not in tokenizer._additional_special_tokens:
54
+ tokenizer._additional_special_tokens.append('myv_XX')
55
+ tokenizer.added_tokens_encoder = {}
56
+
57
+
58
+ def translate(text, model, tokenizer, src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False, n_out=None, **kwargs):
59
+ tokenizer.src_lang = src
60
+ encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
61
+ if max_length == 'auto':
62
+ max_length = int(32 + 1.5 * encoded.input_ids.shape[1])
63
+ if train_mode:
64
+ model.train()
65
+ else:
66
+ model.eval()
67
+ generated_tokens = model.generate(
68
+ **encoded.to(model.device),
69
+ forced_bos_token_id=tokenizer.lang_code_to_id[trg],
70
+ max_length=max_length,
71
+ num_beams=num_beams,
72
+ repetition_penalty=repetition_penalty,
73
+ num_return_sequences=n_out or 1,
74
+ **kwargs
75
+ )
76
+ out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
77
+ if isinstance(text, str) and n_out is None:
78
+ return out[0]
79
+ return out
80
+
81
+
82
+ mname = 'slone/mbart-large-51-mul-myv-v1'
83
+ model = MBartForConditionalGeneration.from_pretrained(mname)
84
+ tokenizer = MBart50Tokenizer.from_pretrained(mname)
85
+ fix_tokenizer(tokenizer)
86
+
87
+
88
+ print(translate('Привет, собака!', model, tokenizer, src='ru_RU', trg='myv_XX'))
89
+ # Шумбрат, киска! # действительно, по-эрзянски собака именно так
90
+ print(translate('Hello, doggy!', model, tokenizer, src='en_XX', trg='myv_XX'))
91
+ # Шумбрат, киска!
92
+ ```