Upload Unit1 PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 253.55 +/- 18.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f422cf2f7f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f422cf2f880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f422cf2f910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f422cf2f9a0>", "_build": "<function ActorCriticPolicy._build at 0x7f422cf2fa30>", "forward": "<function ActorCriticPolicy.forward at 0x7f422cf2fac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f422cf2fb50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f422cf2fbe0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f422cf2fc70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f422cf2fd00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f422cf2fd90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f422cf2fe20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f422cf2a880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684614121261300014, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABSmLxc20i6nU14uxuEWzj5DkQ7NVe3OQAAgD8AAIA/TbUHPa61oLoCaFE5K25stNrwXLkCoW64AACAPwAAgD+aN3a9KThRui7nBDrxr9s0oWaCOQmNHLkAAIA/AACAP8DjsT0pwHq6CQeeOq2YZLfXST+6+/9guAAAgD8AAIA/ZqYbu8P5fbqdEXG7ZoVKNl8qZ7sOsYk6AACAPwAAgD/wIYg+6cFmP0ookj598q2+de9ePgCy0TwAAAAAAAAAAOZOez17opq6hTONudkXgrQ3wIU6xAijOAAAgD8AAIA/5oeKveGggLpoBQm8s81ONuuuujqTjrq1AACAPwAAgD9zx849XLdmurxaLznMGZ62fGMhO2ZqSbgAAIA/AACAPwCLgLxcUwS6Mu6XO2ZMDDhYn6G6HQgHtwAAgD8AAIA/Gj8KPRSKmLoH8Ka3mm5+skxTFbsSycA2AACAPwAAgD9m6XY9KeheunMfSrxN7582kXfkOr57ErYAAIA/AACAP83xk70piEa6zuxpuVdxzbRsfsO6TBCIOAAAgD8AAIA/M1vlPEgLsrqhry67bx7rNySoGzkN4c05AACAPwAAgD9m1oK9XPMbuuqlcbox3Uy1oSG8uijZijkAAIA/AACAP+aSYb3DsSO6b/YcOrNOyTR2LoK6rlM2uQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF4q2X9itq6MAWyUTegDjAF0lEdAkXR1FlTWG3V9lChoBkdAZ01fqoqCpWgHTegDaAhHQJF2bvfCQ911fZQoaAZHQGMKLELpiZxoB03oA2gIR0CRd/zXjENwdX2UKGgGR0Bmoj8WKuSwaAdN6ANoCEdAkXxgYxcmjXV9lChoBkdAXl0w1zhgmmgHTegDaAhHQJF9USFoL5R1fZQoaAZHQGFGAk9lmOFoB03oA2gIR0CRf6pSJj2BdX2UKGgGR0BmkBXbM5fdaAdN6ANoCEdAkYV0n5SFXnV9lChoBkdAZkf2KVII4WgHTegDaAhHQJGJpufmLcd1fZQoaAZHwBGM6aLGaQVoB0v4aAhHQJGKSrLhaTx1fZQoaAZHQGYQJG4I8hdoB03oA2gIR0CRjMoZAIIGdX2UKGgGR0BjRMGVzIV/aAdN6ANoCEdAkY1fdhy8z3V9lChoBkdAY2bAZbY9PmgHTegDaAhHQJGawjqv/zd1fZQoaAZHQGLbzbeuV5doB03oA2gIR0CRnK7hvR7adX2UKGgGR0BiDlCswL3LaAdN6ANoCEdAkZ5s4cWCVnV9lChoBkdAXm1y8zyjHmgHTegDaAhHQJGfpuKoAGV1fZQoaAZHQGc4Jx//echoB03oA2gIR0CRo6SjxkNGdX2UKGgGR0Bdq0E1VHWjaAdN6ANoCEdAkb8crRSgoXV9lChoBkdAZfHUWl/H52gHTegDaAhHQJHDF7Uoa1l1fZQoaAZHQGA4W606YE5oB03oA2gIR0CRxRRTCLuQdX2UKGgGR0BjxBxkupS8aAdN6ANoCEdAkcahvJiiI3V9lChoBkdAY3ioYvWYnmgHTegDaAhHQJHL5g+hXbN1fZQoaAZHQGaEJcHGCI1oB03oA2gIR0CRzjcdYGMXdX2UKGgGR0BhXymTC+DfaAdN6ANoCEdAkdXUqc3ERHV9lChoBkdAZM23974SH2gHTegDaAhHQJHb+JsO5J91fZQoaAZHQGZlnRsuWbBoB03oA2gIR0CR3QbKzRhMdX2UKGgGR0BiwB9XtBv8aAdN6ANoCEdAkeC80UGmk3V9lChoBkdAZba6S1Vo6GgHTegDaAhHQJHhUa4tpVV1fZQoaAZHQGTDDiGWUr1oB03oA2gIR0CR7Ds1KoQ4dX2UKGgGR0Bh0QbS7Xg+aAdN6ANoCEdAke2JcLSeAnV9lChoBkdAYXiPSUkfLmgHTegDaAhHQJHuxZRsMy91fZQoaAZHQGPla7dznzRoB03oA2gIR0CR7515jYqYdX2UKGgGR0Bio+LiuMdcaAdN6ANoCEdAkfJvLX+VDHV9lChoBkdAW697NSqEOGgHTegDaAhHQJINvMxGlRB1fZQoaAZHQFCAEQoTfzloB00IAWgIR0CSD714Pf8/dX2UKGgGR0BmbyJ66asqaAdN6ANoCEdAkhK1/2Cd0HV9lChoBkdAaFAGEf1YhmgHTegDaAhHQJIVSUMXrMV1fZQoaAZHQHBKRsZYPoVoB03nA2gIR0CSF0xiobXIdX2UKGgGR0Bifv2bobGWaAdN6ANoCEdAkh03+l0o0HV9lChoBkdAYKxPrv9cbGgHTegDaAhHQJIfZrvb48F1fZQoaAZHQEvmasIVuaZoB0v8aAhHQJIgmlP8AJd1fZQoaAZHQGIGDv3JxNtoB03oA2gIR0CSJKI68xsVdX2UKGgGR0BkX6z7di2EaAdN6ANoCEdAkihzposZpHV9lChoBkdAZdgfukUKzGgHTegDaAhHQJIpERGtp251fZQoaAZHQGBC4VARkEtoB03oA2gIR0CSK0giNbTudX2UKGgGR0BmUTSXt0FKaAdN6ANoCEdAkivWUSqU/3V9lChoBkdAZLaFL39JjGgHTegDaAhHQJI2mnzg/C91fZQoaAZHQGPXlI/Z/TdoB03oA2gIR0CSN/N96TnrdX2UKGgGR0Bjhxm7J4jbaAdN6ANoCEdAkjkrZrYXf3V9lChoBkdAYpePrfLs8mgHTegDaAhHQJI86/rSmZV1fZQoaAZHQGS2YaxX4j9oB03oA2gIR0CSXPkO7QLNdX2UKGgGR0Bip2Tq0MPSaAdN6ANoCEdAkmC4FvAGjnV9lChoBkdAYkoiOearm2gHTegDaAhHQJJijSofjjt1fZQoaAZHQGSUifxtpEhoB03oA2gIR0CSY+pRoAXEdX2UKGgGR0Bjm27L+xW1aAdN6ANoCEdAkmjBA8jiXXV9lChoBkdAYnHXZoPCmGgHTegDaAhHQJJq7X+VC5V1fZQoaAZHQGCGh4+r2g5oB03oA2gIR0CSbB83Mpw0dX2UKGgGR0BhLdJg9eQdaAdN6ANoCEdAknAzLwF1S3V9lChoBkdAZ0UQK8cuJ2gHTegDaAhHQJJz+fpUxVR1fZQoaAZHQGVm50r9VFRoB03oA2gIR0CSdI+l0o0AdX2UKGgGR0Bm4j3AVO9GaAdN6ANoCEdAknawMx46fnV9lChoBkdAZvKuFHrhSGgHTegDaAhHQJJ3MIBzV+Z1fZQoaAZHQGac7FKkEcNoB03oA2gIR0CSgw5xBE8adX2UKGgGR0Bjig88s+V1aAdN6ANoCEdAkoTM+A3DN3V9lChoBkdAYyvnq3VkMGgHTegDaAhHQJKGhVU+9rZ1fZQoaAZHQGMUBi1AqutoB03oA2gIR0CSi7HqeK8+dX2UKGgGR0BhtUD0UXYUaAdN6ANoCEdAkpXqxTsIFHV9lChoBkdAW+23y7PIGWgHTegDaAhHQJKpJvhqCYl1fZQoaAZHQF9pvlU6xPhoB03oA2gIR0CSqskT6BRRdX2UKGgGR0Bni2YOUdJbaAdN6ANoCEdAkqwPR7Z393V9lChoBkdAcIloqkM1CWgHTboCaAhHQJKvV08vEjx1fZQoaAZHQGWyW8h9srNoB03oA2gIR0CSsIxDLKV6dX2UKGgGR0BySBOSGJvYaAdNwwNoCEdAkrHosAeaKHV9lChoBkdAZOqBxPwd82gHTegDaAhHQJKyiVbA1vV1fZQoaAZHwDs3X2/SH/NoB0vPaAhHQJK1/i3ocJd1fZQoaAZHQGAMJxvNu+BoB03oA2gIR0CSt/yCWeH0dX2UKGgGR0BjxpH5JsfraAdN6ANoCEdAkr0HUc4o7XV9lChoBkdAYhstWdVebGgHTegDaAhHQJK92NFSbYt1fZQoaAZHQGfTnhS9/SZoB03oA2gIR0CSwbGSpzcRdX2UKGgGR0BNv60QbuMNaAdNGQFoCEdAkslDyvs7dXV9lChoBkdAXeA4p+c6NmgHTegDaAhHQJLOQvduYQd1fZQoaAZHQGGjvh60IC5oB03oA2gIR0CSz6ZTAFgVdX2UKGgGR0BfrWYfGMn7aAdN6ANoCEdAktDps41gpnV9lChoBkdAZlOCBf8dgmgHTegDaAhHQJLUiNJe3QV1fZQoaAZHQGH3BEKE385oB03oA2gIR0CS3uh99c8ldX2UKGgGR0BlQac/dIoWaAdN6ANoCEdAkvPoa99MK3V9lChoBkdAYUTNgSeyzGgHTegDaAhHQJL2W2iL2pR1fZQoaAZHQGH4269TP0JoB03oA2gIR0CS/Ys6aLGadX2UKGgGR0BmWC4+bExZaAdN6ANoCEdAkv99yLhrFnV9lChoBkdAZx5mcvugH2gHTegDaAhHQJMBublRxcV1fZQoaAZHQGJFD/dZaFFoB03oA2gIR0CTApOnl4kedX2UKGgGR0Bm+BTER8MNaAdN6ANoCEdAkweGUbDMvHV9lChoBkdAYAQUKzAvc2gHTegDaAhHQJMLTAfuCwt1fZQoaAZHQGWs6uOjqOdoB03oA2gIR0CTC/JQ+EAYdX2UKGgGR0BwGCK/EfknaAdNeAJoCEdAkwwb3sXzlXV9lChoBkdAYornpSrHVGgHTegDaAhHQJMOsaxX4j91fZQoaAZHQGEgdfTkQwtoB03oA2gIR0CTFHL3bmEHdX2UKGgGR0BidnmzSkTIaAdN6ANoCEdAkxnxshxHXnV9lChoBkdAZpNl+Vkc0mgHTegDaAhHQJMbSPU8V591fZQoaAZHQGRb3I2fkFRoB03oA2gIR0CTHJshPj4pdX2UKGgGR0Bm32JrLyMDaAdN6ANoCEdAkyxCr92ovXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7480a56b2a7ae6f8804d079e784f9df784744021f6f25d3b40b97d3fe8aa8493
|
3 |
+
size 146755
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f422cf2f7f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f422cf2f880>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f422cf2f910>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f422cf2f9a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f422cf2fa30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f422cf2fac0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f422cf2fb50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f422cf2fbe0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f422cf2fc70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f422cf2fd00>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f422cf2fd90>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f422cf2fe20>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f422cf2a880>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1684614121261300014,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABSmLxc20i6nU14uxuEWzj5DkQ7NVe3OQAAgD8AAIA/TbUHPa61oLoCaFE5K25stNrwXLkCoW64AACAPwAAgD+aN3a9KThRui7nBDrxr9s0oWaCOQmNHLkAAIA/AACAP8DjsT0pwHq6CQeeOq2YZLfXST+6+/9guAAAgD8AAIA/ZqYbu8P5fbqdEXG7ZoVKNl8qZ7sOsYk6AACAPwAAgD/wIYg+6cFmP0ookj598q2+de9ePgCy0TwAAAAAAAAAAOZOez17opq6hTONudkXgrQ3wIU6xAijOAAAgD8AAIA/5oeKveGggLpoBQm8s81ONuuuujqTjrq1AACAPwAAgD9zx849XLdmurxaLznMGZ62fGMhO2ZqSbgAAIA/AACAPwCLgLxcUwS6Mu6XO2ZMDDhYn6G6HQgHtwAAgD8AAIA/Gj8KPRSKmLoH8Ka3mm5+skxTFbsSycA2AACAPwAAgD9m6XY9KeheunMfSrxN7582kXfkOr57ErYAAIA/AACAP83xk70piEa6zuxpuVdxzbRsfsO6TBCIOAAAgD8AAIA/M1vlPEgLsrqhry67bx7rNySoGzkN4c05AACAPwAAgD9m1oK9XPMbuuqlcbox3Uy1oSG8uijZijkAAIA/AACAP+aSYb3DsSO6b/YcOrNOyTR2LoK6rlM2uQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF4q2X9itq6MAWyUTegDjAF0lEdAkXR1FlTWG3V9lChoBkdAZ01fqoqCpWgHTegDaAhHQJF2bvfCQ911fZQoaAZHQGMKLELpiZxoB03oA2gIR0CRd/zXjENwdX2UKGgGR0Bmoj8WKuSwaAdN6ANoCEdAkXxgYxcmjXV9lChoBkdAXl0w1zhgmmgHTegDaAhHQJF9USFoL5R1fZQoaAZHQGFGAk9lmOFoB03oA2gIR0CRf6pSJj2BdX2UKGgGR0BmkBXbM5fdaAdN6ANoCEdAkYV0n5SFXnV9lChoBkdAZkf2KVII4WgHTegDaAhHQJGJpufmLcd1fZQoaAZHwBGM6aLGaQVoB0v4aAhHQJGKSrLhaTx1fZQoaAZHQGYQJG4I8hdoB03oA2gIR0CRjMoZAIIGdX2UKGgGR0BjRMGVzIV/aAdN6ANoCEdAkY1fdhy8z3V9lChoBkdAY2bAZbY9PmgHTegDaAhHQJGawjqv/zd1fZQoaAZHQGLbzbeuV5doB03oA2gIR0CRnK7hvR7adX2UKGgGR0BiDlCswL3LaAdN6ANoCEdAkZ5s4cWCVnV9lChoBkdAXm1y8zyjHmgHTegDaAhHQJGfpuKoAGV1fZQoaAZHQGc4Jx//echoB03oA2gIR0CRo6SjxkNGdX2UKGgGR0Bdq0E1VHWjaAdN6ANoCEdAkb8crRSgoXV9lChoBkdAZfHUWl/H52gHTegDaAhHQJHDF7Uoa1l1fZQoaAZHQGA4W606YE5oB03oA2gIR0CRxRRTCLuQdX2UKGgGR0BjxBxkupS8aAdN6ANoCEdAkcahvJiiI3V9lChoBkdAY3ioYvWYnmgHTegDaAhHQJHL5g+hXbN1fZQoaAZHQGaEJcHGCI1oB03oA2gIR0CRzjcdYGMXdX2UKGgGR0BhXymTC+DfaAdN6ANoCEdAkdXUqc3ERHV9lChoBkdAZM23974SH2gHTegDaAhHQJHb+JsO5J91fZQoaAZHQGZlnRsuWbBoB03oA2gIR0CR3QbKzRhMdX2UKGgGR0BiwB9XtBv8aAdN6ANoCEdAkeC80UGmk3V9lChoBkdAZba6S1Vo6GgHTegDaAhHQJHhUa4tpVV1fZQoaAZHQGTDDiGWUr1oB03oA2gIR0CR7Ds1KoQ4dX2UKGgGR0Bh0QbS7Xg+aAdN6ANoCEdAke2JcLSeAnV9lChoBkdAYXiPSUkfLmgHTegDaAhHQJHuxZRsMy91fZQoaAZHQGPla7dznzRoB03oA2gIR0CR7515jYqYdX2UKGgGR0Bio+LiuMdcaAdN6ANoCEdAkfJvLX+VDHV9lChoBkdAW697NSqEOGgHTegDaAhHQJINvMxGlRB1fZQoaAZHQFCAEQoTfzloB00IAWgIR0CSD714Pf8/dX2UKGgGR0BmbyJ66asqaAdN6ANoCEdAkhK1/2Cd0HV9lChoBkdAaFAGEf1YhmgHTegDaAhHQJIVSUMXrMV1fZQoaAZHQHBKRsZYPoVoB03nA2gIR0CSF0xiobXIdX2UKGgGR0Bifv2bobGWaAdN6ANoCEdAkh03+l0o0HV9lChoBkdAYKxPrv9cbGgHTegDaAhHQJIfZrvb48F1fZQoaAZHQEvmasIVuaZoB0v8aAhHQJIgmlP8AJd1fZQoaAZHQGIGDv3JxNtoB03oA2gIR0CSJKI68xsVdX2UKGgGR0BkX6z7di2EaAdN6ANoCEdAkihzposZpHV9lChoBkdAZdgfukUKzGgHTegDaAhHQJIpERGtp251fZQoaAZHQGBC4VARkEtoB03oA2gIR0CSK0giNbTudX2UKGgGR0BmUTSXt0FKaAdN6ANoCEdAkivWUSqU/3V9lChoBkdAZLaFL39JjGgHTegDaAhHQJI2mnzg/C91fZQoaAZHQGPXlI/Z/TdoB03oA2gIR0CSN/N96TnrdX2UKGgGR0Bjhxm7J4jbaAdN6ANoCEdAkjkrZrYXf3V9lChoBkdAYpePrfLs8mgHTegDaAhHQJI86/rSmZV1fZQoaAZHQGS2YaxX4j9oB03oA2gIR0CSXPkO7QLNdX2UKGgGR0Bip2Tq0MPSaAdN6ANoCEdAkmC4FvAGjnV9lChoBkdAYkoiOearm2gHTegDaAhHQJJijSofjjt1fZQoaAZHQGSUifxtpEhoB03oA2gIR0CSY+pRoAXEdX2UKGgGR0Bjm27L+xW1aAdN6ANoCEdAkmjBA8jiXXV9lChoBkdAYnHXZoPCmGgHTegDaAhHQJJq7X+VC5V1fZQoaAZHQGCGh4+r2g5oB03oA2gIR0CSbB83Mpw0dX2UKGgGR0BhLdJg9eQdaAdN6ANoCEdAknAzLwF1S3V9lChoBkdAZ0UQK8cuJ2gHTegDaAhHQJJz+fpUxVR1fZQoaAZHQGVm50r9VFRoB03oA2gIR0CSdI+l0o0AdX2UKGgGR0Bm4j3AVO9GaAdN6ANoCEdAknawMx46fnV9lChoBkdAZvKuFHrhSGgHTegDaAhHQJJ3MIBzV+Z1fZQoaAZHQGac7FKkEcNoB03oA2gIR0CSgw5xBE8adX2UKGgGR0Bjig88s+V1aAdN6ANoCEdAkoTM+A3DN3V9lChoBkdAYyvnq3VkMGgHTegDaAhHQJKGhVU+9rZ1fZQoaAZHQGMUBi1AqutoB03oA2gIR0CSi7HqeK8+dX2UKGgGR0BhtUD0UXYUaAdN6ANoCEdAkpXqxTsIFHV9lChoBkdAW+23y7PIGWgHTegDaAhHQJKpJvhqCYl1fZQoaAZHQF9pvlU6xPhoB03oA2gIR0CSqskT6BRRdX2UKGgGR0Bni2YOUdJbaAdN6ANoCEdAkqwPR7Z393V9lChoBkdAcIloqkM1CWgHTboCaAhHQJKvV08vEjx1fZQoaAZHQGWyW8h9srNoB03oA2gIR0CSsIxDLKV6dX2UKGgGR0BySBOSGJvYaAdNwwNoCEdAkrHosAeaKHV9lChoBkdAZOqBxPwd82gHTegDaAhHQJKyiVbA1vV1fZQoaAZHwDs3X2/SH/NoB0vPaAhHQJK1/i3ocJd1fZQoaAZHQGAMJxvNu+BoB03oA2gIR0CSt/yCWeH0dX2UKGgGR0BjxpH5JsfraAdN6ANoCEdAkr0HUc4o7XV9lChoBkdAYhstWdVebGgHTegDaAhHQJK92NFSbYt1fZQoaAZHQGfTnhS9/SZoB03oA2gIR0CSwbGSpzcRdX2UKGgGR0BNv60QbuMNaAdNGQFoCEdAkslDyvs7dXV9lChoBkdAXeA4p+c6NmgHTegDaAhHQJLOQvduYQd1fZQoaAZHQGGjvh60IC5oB03oA2gIR0CSz6ZTAFgVdX2UKGgGR0BfrWYfGMn7aAdN6ANoCEdAktDps41gpnV9lChoBkdAZlOCBf8dgmgHTegDaAhHQJLUiNJe3QV1fZQoaAZHQGH3BEKE385oB03oA2gIR0CS3uh99c8ldX2UKGgGR0BlQac/dIoWaAdN6ANoCEdAkvPoa99MK3V9lChoBkdAYUTNgSeyzGgHTegDaAhHQJL2W2iL2pR1fZQoaAZHQGH4269TP0JoB03oA2gIR0CS/Ys6aLGadX2UKGgGR0BmWC4+bExZaAdN6ANoCEdAkv99yLhrFnV9lChoBkdAZx5mcvugH2gHTegDaAhHQJMBublRxcV1fZQoaAZHQGJFD/dZaFFoB03oA2gIR0CTApOnl4kedX2UKGgGR0Bm+BTER8MNaAdN6ANoCEdAkweGUbDMvHV9lChoBkdAYAQUKzAvc2gHTegDaAhHQJMLTAfuCwt1fZQoaAZHQGWs6uOjqOdoB03oA2gIR0CTC/JQ+EAYdX2UKGgGR0BwGCK/EfknaAdNeAJoCEdAkwwb3sXzlXV9lChoBkdAYornpSrHVGgHTegDaAhHQJMOsaxX4j91fZQoaAZHQGEgdfTkQwtoB03oA2gIR0CTFHL3bmEHdX2UKGgGR0BidnmzSkTIaAdN6ANoCEdAkxnxshxHXnV9lChoBkdAZpNl+Vkc0mgHTegDaAhHQJMbSPU8V591fZQoaAZHQGRb3I2fkFRoB03oA2gIR0CTHJshPj4pdX2UKGgGR0Bm32JrLyMDaAdN6ANoCEdAkyxCr92ovXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dac88be35998c4bb67e4e5856627d3bbc37c52701842ac6db163942d4d36942b
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1e9472e3ebf93c4bb0cf2f325a9dae828ec0d5c17e5b5dee5f4f2073a6fba69
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (186 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 253.5547799266131, "std_reward": 18.92877168803542, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T20:47:09.925752"}
|