whisper-large_v2_test / good_handler.py
slplab's picture
Update good_handler.py
e769edb
raw
history blame
682 Bytes
from typing import Dict, Any, List
from transformers import pipeline
import torch
#### USE of PIPELINE
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class EndpointHandler:
def __init__(self, path=""):
self.pipe = pipeline(task='automatic-speech-recognition', model=path, device=device)
def __call__(self, data: Any) -> List[Dict[str, str]]:
inputs = data.pop("inputs", data)
transcribe = self.pipe
transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ko", task="transcribe")
result = transcribe(data['inputs'])
return result