Seventh commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -8.52 +/- 1.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f84c3ca725173e0ac1d692ab7cce7d05850ed00b24dc626fc1edfe1b516af7d
|
3 |
+
size 108040
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0d36be2b00>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0d36be5cc0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 4000000,
|
23 |
+
"_total_timesteps": 4000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1685818302686248733,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQeWQPwyJ0T8GE4Y/oGt0P3W00L/nTr6//3uTP+tbJ7++sro/bbAbPx7ATr6BKbA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]]",
|
38 |
+
"desired_goal": "[[ 1.1319963 1.6369948 1.0474555 ]\n [ 0.9547672 -1.6305071 -1.4867829 ]\n [ 1.1522216 -0.6537463 1.4585798 ]\n [ 0.6081608 -0.20190474 1.3762666 ]]",
|
39 |
+
"observation": "[[0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7pI3vdwUvb0G3zk+hICYPHpmC74S24k+hvPivaHuA74lMXY9yGRPvavfKj0dSPk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.04481786 -0.09232494 0.18151483]\n [ 0.01861597 -0.1361331 0.2692495 ]\n [-0.11081605 -0.12883998 0.06010546]\n [-0.05063322 0.04171721 0.12171958]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHcu76gETE8CUhpRSlIwBbJRLMowBdJRHQMTnfPkili11fZQoaAZoCWgPQwgPJsXHJ8QdwJSGlFKUaBVLMmgWR0DE524yAQQMdX2UKGgGaAloD0MIFEIHXcIhFMCUhpRSlGgVSzJoFkdAxOdf9Wp6yHV9lChoBmgJaA9DCJrS+lsCCCLAlIaUUpRoFUsyaBZHQMTnUNBfKIV1fZQoaAZoCWgPQwiGN2vwvuoawJSGlFKUaBVLMmgWR0DE57cTBZZCdX2UKGgGaAloD0MIiIIZU7DeIsCUhpRSlGgVSzJoFkdAxOeoQ8wHq3V9lChoBmgJaA9DCFMGDmjpShrAlIaUUpRoFUsyaBZHQMTnmgrH2h91fZQoaAZoCWgPQwgFM6ZgjQMWwJSGlFKUaBVLMmgWR0DE54rPIGQkdX2UKGgGaAloD0MIK4VALnF0H8CUhpRSlGgVSzJoFkdAxOfwHBUJfXV9lChoBmgJaA9DCKdc4V0uIh7AlIaUUpRoFUsyaBZHQMTn4U/wAlx1fZQoaAZoCWgPQwhnuWx0zk8hwJSGlFKUaBVLMmgWR0DE59MkleF+dX2UKGgGaAloD0MIbNCX3v68GMCUhpRSlGgVSzJoFkdAxOfD8MuvlnV9lChoBmgJaA9DCHui68IPXhTAlIaUUpRoFUsyaBZHQMToLT72tdR1fZQoaAZoCWgPQwjIl1DB4eUfwJSGlFKUaBVLMmgWR0DE6B6RB/qgdX2UKGgGaAloD0MIvB+3Xz6pHcCUhpRSlGgVSzJoFkdAxOgQcf/3nXV9lChoBmgJaA9DCA2Oklfn2BfAlIaUUpRoFUsyaBZHQMToAVBdD6Z1fZQoaAZoCWgPQwi/Yg0XuWcmwJSGlFKUaBVLMmgWR0DE6GcYQ8OkdX2UKGgGaAloD0MIyAp+G2IMIMCUhpRSlGgVSzJoFkdAxOhYZML4OHV9lChoBmgJaA9DCJrpXif1xSLAlIaUUpRoFUsyaBZHQMToSjRD1Gt1fZQoaAZoCWgPQwht/8pKk0InwJSGlFKUaBVLMmgWR0DE6Dr212JSdX2UKGgGaAloD0MIERjrG5i8IcCUhpRSlGgVSzJoFkdAxOin1SwW33V9lChoBmgJaA9DCPWAeciUjx/AlIaUUpRoFUsyaBZHQMTomROclPd1fZQoaAZoCWgPQwjvOEVHcqkbwJSGlFKUaBVLMmgWR0DE6IrxgAp8dX2UKGgGaAloD0MITihEwCE0FMCUhpRSlGgVSzJoFkdAxOh7rJKaonV9lChoBmgJaA9DCG/W4H1V3iXAlIaUUpRoFUsyaBZHQMTo5a7ulXR1fZQoaAZoCWgPQwjIfECgM1kcwJSGlFKUaBVLMmgWR0DE6NbbnHNpdX2UKGgGaAloD0MI5Uf8ijW0I8CUhpRSlGgVSzJoFkdAxOjIqjJuEXV9lChoBmgJaA9DCAEVjiCV4h/AlIaUUpRoFUsyaBZHQMTouW3KB/Z1fZQoaAZoCWgPQwjFyJI5lvcRwJSGlFKUaBVLMmgWR0DE6R50W/JvdX2UKGgGaAloD0MICK7yBMIeGMCUhpRSlGgVSzJoFkdAxOkPpnHvMXV9lChoBmgJaA9DCFr1udqKBSTAlIaUUpRoFUsyaBZHQMTpAXHq/ud1fZQoaAZoCWgPQwiYwK27eZohwJSGlFKUaBVLMmgWR0DE6PI3xWkrdX2UKGgGaAloD0MIvvp46LurIMCUhpRSlGgVSzJoFkdAxOlZvH93r3V9lChoBmgJaA9DCPuVzodniSfAlIaUUpRoFUsyaBZHQMTpSuh0yQB1fZQoaAZoCWgPQwgNN+Dzw5AiwJSGlFKUaBVLMmgWR0DE6TzE74i5dX2UKGgGaAloD0MIwwyNJ4L4HcCUhpRSlGgVSzJoFkdAxOktd1uBMHV9lChoBmgJaA9DCBDqIoWygBXAlIaUUpRoFUsyaBZHQMTpkW2XsxB1fZQoaAZoCWgPQwjK4v4j07khwJSGlFKUaBVLMmgWR0DE6YKjHn2adX2UKGgGaAloD0MIsOjWa3poIMCUhpRSlGgVSzJoFkdAxOl0bNr0rnV9lChoBmgJaA9DCN0kBoGVwxXAlIaUUpRoFUsyaBZHQMTpZR51Ng11fZQoaAZoCWgPQwiMEYlCywodwJSGlFKUaBVLMmgWR0DE6cm2kSEldX2UKGgGaAloD0MIMQisHFpkI8CUhpRSlGgVSzJoFkdAxOm65+Ytx3V9lChoBmgJaA9DCGsRUUzeCCTAlIaUUpRoFUsyaBZHQMTprLI5o5B1fZQoaAZoCWgPQwjThVj9EYYnwJSGlFKUaBVLMmgWR0DE6Z1gnc+JdX2UKGgGaAloD0MIF+/H7ZevE8CUhpRSlGgVSzJoFkdAxOn+rjo6jnV9lChoBmgJaA9DCE59IHnngBjAlIaUUpRoFUsyaBZHQMTp79hy8z11fZQoaAZoCWgPQwipnzcVqcAdwJSGlFKUaBVLMmgWR0DE6eGez2OAdX2UKGgGaAloD0MIfzMxXYg1F8CUhpRSlGgVSzJoFkdAxOnSaJAMUnV9lChoBmgJaA9DCCO70jJSryTAlIaUUpRoFUsyaBZHQMTqOqzZ6D51fZQoaAZoCWgPQwiw5CoWv5kXwJSGlFKUaBVLMmgWR0DE6ivpfQa8dX2UKGgGaAloD0MIg7709udyH8CUhpRSlGgVSzJoFkdAxOodra/RFHV9lChoBmgJaA9DCPnWh/VGXRfAlIaUUpRoFUsyaBZHQMTqDmhdt2t1fZQoaAZoCWgPQwh9XBsqxikewJSGlFKUaBVLMmgWR0DE6nE6DGtIdX2UKGgGaAloD0MI9bhvtU6cIcCUhpRSlGgVSzJoFkdAxOpiYWtU43V9lChoBmgJaA9DCF6+9WG9URnAlIaUUpRoFUsyaBZHQMTqVEo4MnZ1fZQoaAZoCWgPQwiMnlvoSmwhwJSGlFKUaBVLMmgWR0DE6kT9OymidX2UKGgGaAloD0MIPV+zXDZyJcCUhpRSlGgVSzJoFkdAxOqqDB/I83V9lChoBmgJaA9DCLcqieyDfCfAlIaUUpRoFUsyaBZHQMTqmziCJ411fZQoaAZoCWgPQwj3ViQmqLEawJSGlFKUaBVLMmgWR0DE6o0AaNuMdX2UKGgGaAloD0MIh4cwfhp3IMCUhpRSlGgVSzJoFkdAxOp9wLE1mHV9lChoBmgJaA9DCI5bzM8NNSPAlIaUUpRoFUsyaBZHQMTq5K4QSSN1fZQoaAZoCWgPQwhOKhprf5ccwJSGlFKUaBVLMmgWR0DE6tXyup0fdX2UKGgGaAloD0MIU1kUdlFEHsCUhpRSlGgVSzJoFkdAxOrHvd/KAHV9lChoBmgJaA9DCDv7yoP0TCPAlIaUUpRoFUsyaBZHQMTquGlQ/HJ1fZQoaAZoCWgPQwgyAFRx4zYTwJSGlFKUaBVLMmgWR0DE6x7rAxi5dX2UKGgGaAloD0MITb7Z5sbUEcCUhpRSlGgVSzJoFkdAxOsQKP4mC3V9lChoBmgJaA9DCGnlXmBWqCbAlIaUUpRoFUsyaBZHQMTrAeuV5bB1fZQoaAZoCWgPQwi5jJsaaOYhwJSGlFKUaBVLMmgWR0DE6vKZjQRgdX2UKGgGaAloD0MIREyJJHohIMCUhpRSlGgVSzJoFkdAxOtY619fC3V9lChoBmgJaA9DCAN64c6FESjAlIaUUpRoFUsyaBZHQMTrSiLVFx51fZQoaAZoCWgPQwg+WTFcHegkwJSGlFKUaBVLMmgWR0DE6zvmHP/rdX2UKGgGaAloD0MIHLRXHw9tI8CUhpRSlGgVSzJoFkdAxOssqDK5kXV9lChoBmgJaA9DCC+/02TGcyPAlIaUUpRoFUsyaBZHQMTrksqz7dl1fZQoaAZoCWgPQwicoiO5/PcgwJSGlFKUaBVLMmgWR0DE64P2Cdz5dX2UKGgGaAloD0MIYd7jTBP+IcCUhpRSlGgVSzJoFkdAxOt1uejEenV9lChoBmgJaA9DCBHHuriNliLAlIaUUpRoFUsyaBZHQMTrZmqYJE91fZQoaAZoCWgPQwhfYcH9gCcfwJSGlFKUaBVLMmgWR0DE69BOYYzjdX2UKGgGaAloD0MIlC9oIQHDFMCUhpRSlGgVSzJoFkdAxOvBwFTvRnV9lChoBmgJaA9DCH0HP3EAHRjAlIaUUpRoFUsyaBZHQMTrs5flZHN1fZQoaAZoCWgPQwhBZmfRO60gwJSGlFKUaBVLMmgWR0DE66ReHBUJdX2UKGgGaAloD0MIMH+FzJU5I8CUhpRSlGgVSzJoFkdAxOwmY1pCbHV9lChoBmgJaA9DCI178xsmmh3AlIaUUpRoFUsyaBZHQMTsF9HUc4p1fZQoaAZoCWgPQwj+nlinymcYwJSGlFKUaBVLMmgWR0DE7AnV3EAHdX2UKGgGaAloD0MIYp8AipFFGsCUhpRSlGgVSzJoFkdAxOv6rR0EHXV9lChoBmgJaA9DCLH9ZIwPgyLAlIaUUpRoFUsyaBZHQMTsgQm3OOd1fZQoaAZoCWgPQwj5FWu4yEUkwJSGlFKUaBVLMmgWR0DE7HJwsGxEdX2UKGgGaAloD0MIWTMyyF10HsCUhpRSlGgVSzJoFkdAxOxkXBxgiXV9lChoBmgJaA9DCCR7hJohZSXAlIaUUpRoFUsyaBZHQMTsVVGsmv51fZQoaAZoCWgPQwjWcJF7uvodwJSGlFKUaBVLMmgWR0DE7NlWIXTFdX2UKGgGaAloD0MIgbT/AdZ6EsCUhpRSlGgVSzJoFkdAxOzKt03fh3V9lChoBmgJaA9DCJJAg02d5x/AlIaUUpRoFUsyaBZHQMTsvJg9eQd1fZQoaAZoCWgPQwhfQC/cuVAcwJSGlFKUaBVLMmgWR0DE7K1zltCRdX2UKGgGaAloD0MIv2A3bFv0I8CUhpRSlGgVSzJoFkdAxO06nIhhY3V9lChoBmgJaA9DCJy/CYUICCbAlIaUUpRoFUsyaBZHQMTtLAflp491fZQoaAZoCWgPQwhCPujZrJIhwJSGlFKUaBVLMmgWR0DE7R4HxBmgdX2UKGgGaAloD0MIob36eOiLGsCUhpRSlGgVSzJoFkdAxO0O2bXpW3V9lChoBmgJaA9DCNBFQ8ajtBfAlIaUUpRoFUsyaBZHQMTtm08mrsB1fZQoaAZoCWgPQwj8/PfgtWshwJSGlFKUaBVLMmgWR0DE7Yy6Ymb9dX2UKGgGaAloD0MIHekMjLy8JsCUhpRSlGgVSzJoFkdAxO1+s5GSZHV9lChoBmgJaA9DCETAIVSpeQjAlIaUUpRoFUsyaBZHQMTtb6GHpKV1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 200000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60e069d69d3bb773ffd4108ce03f162256237596617dccf28591e8ea7ff44ce7
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3531c1dd9259c6c115813406488d6c23843d45e0ff8f6a9a1119962b962f5ec3
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1617cb6560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1617cb1c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685756030739017066, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiWvGPqsZ/DpZwxE/iWvGPqsZ/DpZwxE/iWvGPqsZ/DpZwxE/iWvGPqsZ/DpZwxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl5HTvycJOb8JvkI/WxnUv10vCL9/Nvg+6/SvPyNKob4ocVc/ZQ55P7+vwz9jHJW+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACJa8Y+qxn8OlnDET/bGgu8Tcbsuu1tTbuJa8Y+qxn8OlnDET/bGgu8Tcbsuu1tTbuJa8Y+qxn8OlnDET/bGgu8Tcbsuu1tTbuJa8Y+qxn8OlnDET/bGgu8Tcbsuu1tTbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38753918 0.00192337 0.569387 ]\n [0.38753918 0.00192337 0.569387 ]\n [0.38753918 0.00192337 0.569387 ]\n [0.38753918 0.00192337 0.569387 ]]", "desired_goal": "[[-1.6528805 -0.7227959 0.7607122 ]\n [-1.6570238 -0.5319727 0.48479077]\n [ 1.3746618 -0.31501874 0.8415704 ]\n [ 0.9728759 1.5288008 -0.2912322 ]]", "observation": "[[ 0.38753918 0.00192337 0.569387 -0.00849029 -0.00180645 -0.0031346 ]\n [ 0.38753918 0.00192337 0.569387 -0.00849029 -0.00180645 -0.0031346 ]\n [ 0.38753918 0.00192337 0.569387 -0.00849029 -0.00180645 -0.0031346 ]\n [ 0.38753918 0.00192337 0.569387 -0.00849029 -0.00180645 -0.0031346 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnGLwu9YAmr08Yz0+xnGnvDhYhj0sukA8weqtPPSuSjuSUxI9cFnmvG6Q5L37IL88lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00733597 -0.07519691 0.18494886]\n [-0.02043999 0.06559795 0.01176314]\n [ 0.0212301 0.0030927 0.03572423]\n [-0.02811882 -0.1116036 0.02333116]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHHxhMlUwD8CUhpRSlIwBbJRLMowBdJRHQMDQZm03OwB1fZQoaAZoCWgPQwic3Vomw7EewJSGlFKUaBVLMmgWR0DA0FNfCyhSdX2UKGgGaAloD0MIZwsIrYcnI8CUhpRSlGgVSzJoFkdAwNA9tP557nV9lChoBmgJaA9DCK98lufBnRbAlIaUUpRoFUsyaBZHQMDQKVo6CDp1fZQoaAZoCWgPQwgYldQJaEINwJSGlFKUaBVLMmgWR0DA0MpzT4L1dX2UKGgGaAloD0MIFCF1O/vKGMCUhpRSlGgVSzJoFkdAwNC3HNHH3nV9lChoBmgJaA9DCINStHIv8BDAlIaUUpRoFUsyaBZHQMDQoUDEFW51fZQoaAZoCWgPQwh56/zbZc8bwJSGlFKUaBVLMmgWR0DA0IzCcf/4dX2UKGgGaAloD0MIkiIyrOJdEsCUhpRSlGgVSzJoFkdAwNEIMHbAUXV9lChoBmgJaA9DCNFBl3DoDQ7AlIaUUpRoFUsyaBZHQMDQ9N52Qnx1fZQoaAZoCWgPQwgVrHE2HQEKwJSGlFKUaBVLMmgWR0DA0N8CNjsldX2UKGgGaAloD0MIkuhlFMsdGsCUhpRSlGgVSzJoFkdAwNDKjIq9XnV9lChoBmgJaA9DCPrwLEFGwBnAlIaUUpRoFUsyaBZHQMDRSBn8Koh1fZQoaAZoCWgPQwjequtQTSkTwJSGlFKUaBVLMmgWR0DA0TTBO58SdX2UKGgGaAloD0MIhxqFJLOaB8CUhpRSlGgVSzJoFkdAwNEe4hEBsHV9lChoBmgJaA9DCPjgtUsbnhzAlIaUUpRoFUsyaBZHQMDRCmois4l1fZQoaAZoCWgPQwiD3htDAIAUwJSGlFKUaBVLMmgWR0DA0YaaRZEEdX2UKGgGaAloD0MIgo5WtaTDDMCUhpRSlGgVSzJoFkdAwNFzNt65XnV9lChoBmgJaA9DCLPROT/FgRHAlIaUUpRoFUsyaBZHQMDRXVWS2Yx1fZQoaAZoCWgPQwg/x0eLMxYdwJSGlFKUaBVLMmgWR0DA0UjMNc4YdX2UKGgGaAloD0MImWTkLOyBIcCUhpRSlGgVSzJoFkdAwNHG0ALiM3V9lChoBmgJaA9DCFFoWfePBQ3AlIaUUpRoFUsyaBZHQMDRs32EkB11fZQoaAZoCWgPQwjek4eFWpMMwJSGlFKUaBVLMmgWR0DA0Z2eFtbcdX2UKGgGaAloD0MIsfm4NlT0J8CUhpRSlGgVSzJoFkdAwNGJHAAQx3V9lChoBmgJaA9DCOP9uP3yaQvAlIaUUpRoFUsyaBZHQMDSA5uqFRJ1fZQoaAZoCWgPQwhAE2HD02sNwJSGlFKUaBVLMmgWR0DA0fBAKOT8dX2UKGgGaAloD0MIIlLTLqZpGMCUhpRSlGgVSzJoFkdAwNHaYixFAnV9lChoBmgJaA9DCA9/TdaotxLAlIaUUpRoFUsyaBZHQMDRxegDifh1fZQoaAZoCWgPQwiu1onL8RoXwJSGlFKUaBVLMmgWR0DA0lEwN9YwdX2UKGgGaAloD0MIrADfbd5YDsCUhpRSlGgVSzJoFkdAwNI+D9OymnV9lChoBmgJaA9DCBBaD18mOhTAlIaUUpRoFUsyaBZHQMDSKCyyD7J1fZQoaAZoCWgPQwgv3o/bL28gwJSGlFKUaBVLMmgWR0DA0hOn2qT9dX2UKGgGaAloD0MID4EjgQarGMCUhpRSlGgVSzJoFkdAwNKeHdoFmnV9lChoBmgJaA9DCBN80/TZQQnAlIaUUpRoFUsyaBZHQMDSiwjD8+B1fZQoaAZoCWgPQwg8FtukonEKwJSGlFKUaBVLMmgWR0DA0nU2UB4mdX2UKGgGaAloD0MIxEDXvoBuFMCUhpRSlGgVSzJoFkdAwNJgvC/Gl3V9lChoBmgJaA9DCP+xEB0CJwnAlIaUUpRoFUsyaBZHQMDS6IKlYU51fZQoaAZoCWgPQwgbf6KyYT0RwJSGlFKUaBVLMmgWR0DA0tUovzvrdX2UKGgGaAloD0MIr1qZ8EvNG8CUhpRSlGgVSzJoFkdAwNK/UsnRcHV9lChoBmgJaA9DCNRDNLqDuAvAlIaUUpRoFUsyaBZHQMDSqt7KJVN1fZQoaAZoCWgPQwg10HzO3S4WwJSGlFKUaBVLMmgWR0DA0ymGXXyzdX2UKGgGaAloD0MIFTlE3JwqD8CUhpRSlGgVSzJoFkdAwNMWSAYpD3V9lChoBmgJaA9DCA4SonxBqx7AlIaUUpRoFUsyaBZHQMDTAGXokiV1fZQoaAZoCWgPQwiwWMNF7hkUwJSGlFKUaBVLMmgWR0DA0uvuXu3MdX2UKGgGaAloD0MIPEuQEVChCsCUhpRSlGgVSzJoFkdAwNN+5Xlr/XV9lChoBmgJaA9DCCZxVkRNNAbAlIaUUpRoFUsyaBZHQMDTa7l7tzF1fZQoaAZoCWgPQwgIr13acPgKwJSGlFKUaBVLMmgWR0DA01YMUh3adX2UKGgGaAloD0MIdXRcjezqC8CUhpRSlGgVSzJoFkdAwNNBvR7Z4HV9lChoBmgJaA9DCGjQ0D/BnSPAlIaUUpRoFUsyaBZHQMDTvE4WDYh1fZQoaAZoCWgPQwhiMepae5ciwJSGlFKUaBVLMmgWR0DA06j7bcoIdX2UKGgGaAloD0MIzojS3uD7GMCUhpRSlGgVSzJoFkdAwNOTGsFMZnV9lChoBmgJaA9DCCPzyB8M/BHAlIaUUpRoFUsyaBZHQMDTfo371qZ1fZQoaAZoCWgPQwjQ7/s3L54SwJSGlFKUaBVLMmgWR0DA0/VvCMxXdX2UKGgGaAloD0MIj1GeeTncE8CUhpRSlGgVSzJoFkdAwNPiFAVwgnV9lChoBmgJaA9DCGg9fJkoEhrAlIaUUpRoFUsyaBZHQMDTzCtzS1F1fZQoaAZoCWgPQwhMGTigpYscwJSGlFKUaBVLMmgWR0DA07etjkMkdX2UKGgGaAloD0MIat0Gtd8aE8CUhpRSlGgVSzJoFkdAwNQx37DVIHV9lChoBmgJaA9DCJKSHoZWJw3AlIaUUpRoFUsyaBZHQMDUHsxoIv91fZQoaAZoCWgPQwimQ6fn3dgJwJSGlFKUaBVLMmgWR0DA1AkebNKRdX2UKGgGaAloD0MIGr/wSpLnF8CUhpRSlGgVSzJoFkdAwNP07Dl5nnV9lChoBmgJaA9DCMBfzJasSh/AlIaUUpRoFUsyaBZHQMDUdlCTlkp1fZQoaAZoCWgPQwgHXFfMCH8SwJSGlFKUaBVLMmgWR0DA1GL127nQdX2UKGgGaAloD0MIAHDs2XMZGsCUhpRSlGgVSzJoFkdAwNRNOfukUXV9lChoBmgJaA9DCLXGoBNCFxfAlIaUUpRoFUsyaBZHQMDUOLeyiVV1fZQoaAZoCWgPQwjYD7HBwkkQwJSGlFKUaBVLMmgWR0DA1LwqAjIJdX2UKGgGaAloD0MIC9P3GoJjE8CUhpRSlGgVSzJoFkdAwNSo065oXnV9lChoBmgJaA9DCO/FF+3xohDAlIaUUpRoFUsyaBZHQMDUkzMqz7d1fZQoaAZoCWgPQwhnnlxTIBMfwJSGlFKUaBVLMmgWR0DA1H6ojv/jdX2UKGgGaAloD0MIeH5Rgv4iD8CUhpRSlGgVSzJoFkdAwNUFL4etCHV9lChoBmgJaA9DCB1yM9yAryPAlIaUUpRoFUsyaBZHQMDU8eBpYcN1fZQoaAZoCWgPQwhgIt46/3YRwJSGlFKUaBVLMmgWR0DA1NwfMfRvdX2UKGgGaAloD0MIxOv6BbsBEcCUhpRSlGgVSzJoFkdAwNTH1HOKO3V9lChoBmgJaA9DCNAPI4RHOwPAlIaUUpRoFUsyaBZHQMDVT8tf5UN1fZQoaAZoCWgPQwgn28AdqEMTwJSGlFKUaBVLMmgWR0DA1TxwEQoTdX2UKGgGaAloD0MIhNcubTjsFMCUhpRSlGgVSzJoFkdAwNUmmUnogXV9lChoBmgJaA9DCH9pUZ/kjgzAlIaUUpRoFUsyaBZHQMDVEj/Mnqp1fZQoaAZoCWgPQwg7cw8J39sSwJSGlFKUaBVLMmgWR0DA1Y8xXXAedX2UKGgGaAloD0MI/nvw2qUNGMCUhpRSlGgVSzJoFkdAwNV70ZFXrHV9lChoBmgJaA9DCPLrh9hg4QjAlIaUUpRoFUsyaBZHQMDVZf336AR1fZQoaAZoCWgPQwgWTz3S4FYlwJSGlFKUaBVLMmgWR0DA1VF3r2QGdX2UKGgGaAloD0MIMZi/Qua6HcCUhpRSlGgVSzJoFkdAwNXXAxBVuXV9lChoBmgJaA9DCIv6JHfYJBHAlIaUUpRoFUsyaBZHQMDVw8Vgx8F1fZQoaAZoCWgPQwigGcQHdjwawJSGlFKUaBVLMmgWR0DA1a4wyqMndX2UKGgGaAloD0MIi1OthVkIEsCUhpRSlGgVSzJoFkdAwNWZ4TK1X3V9lChoBmgJaA9DCIjYYOEk/RPAlIaUUpRoFUsyaBZHQMDWQDZL7Gh1fZQoaAZoCWgPQwi6opQQrNoSwJSGlFKUaBVLMmgWR0DA1i0O09hadX2UKGgGaAloD0MIisxc4PKoE8CUhpRSlGgVSzJoFkdAwNYXV09yLnV9lChoBmgJaA9DCBqjdVQ1kR/AlIaUUpRoFUsyaBZHQMDWAvfCQ911fZQoaAZoCWgPQwgI5BJHHogBwJSGlFKUaBVLMmgWR0DA1rELa24NdX2UKGgGaAloD0MIG2K85lVNHcCUhpRSlGgVSzJoFkdAwNad6qKgqXV9lChoBmgJaA9DCP5l9+RhkRbAlIaUUpRoFUsyaBZHQMDWiC0F8oh1fZQoaAZoCWgPQwg+zF62ncYRwJSGlFKUaBVLMmgWR0DA1nPko4MndX2UKGgGaAloD0MIMErQX+gxCcCUhpRSlGgVSzJoFkdAwNccCK77K3V9lChoBmgJaA9DCGCsb2ByQxPAlIaUUpRoFUsyaBZHQMDXCQ2/BWR1fZQoaAZoCWgPQwhVvmckQgMLwJSGlFKUaBVLMmgWR0DA1vODDjzadX2UKGgGaAloD0MIvhb03hhSEcCUhpRSlGgVSzJoFkdAwNbfQemvXHV9lChoBmgJaA9DCAXAeAYNPSTAlIaUUpRoFUsyaBZHQMDXmeT3Zf51fZQoaAZoCWgPQwgj3GRUGQYEwJSGlFKUaBVLMmgWR0DA14bBbfP5dX2UKGgGaAloD0MI/kemQ6dnD8CUhpRSlGgVSzJoFkdAwNdxbUPQOXV9lChoBmgJaA9DCOsCXmbY6AbAlIaUUpRoFUsyaBZHQMDXXTMRpUR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0d36be2b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0d36be5cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 4000000, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685818302686248733, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQeWQPwyJ0T8GE4Y/oGt0P3W00L/nTr6//3uTP+tbJ7++sro/bbAbPx7ATr6BKbA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]]", "desired_goal": "[[ 1.1319963 1.6369948 1.0474555 ]\n [ 0.9547672 -1.6305071 -1.4867829 ]\n [ 1.1522216 -0.6537463 1.4585798 ]\n [ 0.6081608 -0.20190474 1.3762666 ]]", "observation": "[[0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7pI3vdwUvb0G3zk+hICYPHpmC74S24k+hvPivaHuA74lMXY9yGRPvavfKj0dSPk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04481786 -0.09232494 0.18151483]\n [ 0.01861597 -0.1361331 0.2692495 ]\n [-0.11081605 -0.12883998 0.06010546]\n [-0.05063322 0.04171721 0.12171958]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHcu76gETE8CUhpRSlIwBbJRLMowBdJRHQMTnfPkili11fZQoaAZoCWgPQwgPJsXHJ8QdwJSGlFKUaBVLMmgWR0DE524yAQQMdX2UKGgGaAloD0MIFEIHXcIhFMCUhpRSlGgVSzJoFkdAxOdf9Wp6yHV9lChoBmgJaA9DCJrS+lsCCCLAlIaUUpRoFUsyaBZHQMTnUNBfKIV1fZQoaAZoCWgPQwiGN2vwvuoawJSGlFKUaBVLMmgWR0DE57cTBZZCdX2UKGgGaAloD0MIiIIZU7DeIsCUhpRSlGgVSzJoFkdAxOeoQ8wHq3V9lChoBmgJaA9DCFMGDmjpShrAlIaUUpRoFUsyaBZHQMTnmgrH2h91fZQoaAZoCWgPQwgFM6ZgjQMWwJSGlFKUaBVLMmgWR0DE54rPIGQkdX2UKGgGaAloD0MIK4VALnF0H8CUhpRSlGgVSzJoFkdAxOfwHBUJfXV9lChoBmgJaA9DCKdc4V0uIh7AlIaUUpRoFUsyaBZHQMTn4U/wAlx1fZQoaAZoCWgPQwhnuWx0zk8hwJSGlFKUaBVLMmgWR0DE59MkleF+dX2UKGgGaAloD0MIbNCX3v68GMCUhpRSlGgVSzJoFkdAxOfD8MuvlnV9lChoBmgJaA9DCHui68IPXhTAlIaUUpRoFUsyaBZHQMToLT72tdR1fZQoaAZoCWgPQwjIl1DB4eUfwJSGlFKUaBVLMmgWR0DE6B6RB/qgdX2UKGgGaAloD0MIvB+3Xz6pHcCUhpRSlGgVSzJoFkdAxOgQcf/3nXV9lChoBmgJaA9DCA2Oklfn2BfAlIaUUpRoFUsyaBZHQMToAVBdD6Z1fZQoaAZoCWgPQwi/Yg0XuWcmwJSGlFKUaBVLMmgWR0DE6GcYQ8OkdX2UKGgGaAloD0MIyAp+G2IMIMCUhpRSlGgVSzJoFkdAxOhYZML4OHV9lChoBmgJaA9DCJrpXif1xSLAlIaUUpRoFUsyaBZHQMToSjRD1Gt1fZQoaAZoCWgPQwht/8pKk0InwJSGlFKUaBVLMmgWR0DE6Dr212JSdX2UKGgGaAloD0MIERjrG5i8IcCUhpRSlGgVSzJoFkdAxOin1SwW33V9lChoBmgJaA9DCPWAeciUjx/AlIaUUpRoFUsyaBZHQMTomROclPd1fZQoaAZoCWgPQwjvOEVHcqkbwJSGlFKUaBVLMmgWR0DE6IrxgAp8dX2UKGgGaAloD0MITihEwCE0FMCUhpRSlGgVSzJoFkdAxOh7rJKaonV9lChoBmgJaA9DCG/W4H1V3iXAlIaUUpRoFUsyaBZHQMTo5a7ulXR1fZQoaAZoCWgPQwjIfECgM1kcwJSGlFKUaBVLMmgWR0DE6NbbnHNpdX2UKGgGaAloD0MI5Uf8ijW0I8CUhpRSlGgVSzJoFkdAxOjIqjJuEXV9lChoBmgJaA9DCAEVjiCV4h/AlIaUUpRoFUsyaBZHQMTouW3KB/Z1fZQoaAZoCWgPQwjFyJI5lvcRwJSGlFKUaBVLMmgWR0DE6R50W/JvdX2UKGgGaAloD0MICK7yBMIeGMCUhpRSlGgVSzJoFkdAxOkPpnHvMXV9lChoBmgJaA9DCFr1udqKBSTAlIaUUpRoFUsyaBZHQMTpAXHq/ud1fZQoaAZoCWgPQwiYwK27eZohwJSGlFKUaBVLMmgWR0DE6PI3xWkrdX2UKGgGaAloD0MIvvp46LurIMCUhpRSlGgVSzJoFkdAxOlZvH93r3V9lChoBmgJaA9DCPuVzodniSfAlIaUUpRoFUsyaBZHQMTpSuh0yQB1fZQoaAZoCWgPQwgNN+Dzw5AiwJSGlFKUaBVLMmgWR0DE6TzE74i5dX2UKGgGaAloD0MIwwyNJ4L4HcCUhpRSlGgVSzJoFkdAxOktd1uBMHV9lChoBmgJaA9DCBDqIoWygBXAlIaUUpRoFUsyaBZHQMTpkW2XsxB1fZQoaAZoCWgPQwjK4v4j07khwJSGlFKUaBVLMmgWR0DE6YKjHn2adX2UKGgGaAloD0MIsOjWa3poIMCUhpRSlGgVSzJoFkdAxOl0bNr0rnV9lChoBmgJaA9DCN0kBoGVwxXAlIaUUpRoFUsyaBZHQMTpZR51Ng11fZQoaAZoCWgPQwiMEYlCywodwJSGlFKUaBVLMmgWR0DE6cm2kSEldX2UKGgGaAloD0MIMQisHFpkI8CUhpRSlGgVSzJoFkdAxOm65+Ytx3V9lChoBmgJaA9DCGsRUUzeCCTAlIaUUpRoFUsyaBZHQMTprLI5o5B1fZQoaAZoCWgPQwjThVj9EYYnwJSGlFKUaBVLMmgWR0DE6Z1gnc+JdX2UKGgGaAloD0MIF+/H7ZevE8CUhpRSlGgVSzJoFkdAxOn+rjo6jnV9lChoBmgJaA9DCE59IHnngBjAlIaUUpRoFUsyaBZHQMTp79hy8z11fZQoaAZoCWgPQwipnzcVqcAdwJSGlFKUaBVLMmgWR0DE6eGez2OAdX2UKGgGaAloD0MIfzMxXYg1F8CUhpRSlGgVSzJoFkdAxOnSaJAMUnV9lChoBmgJaA9DCCO70jJSryTAlIaUUpRoFUsyaBZHQMTqOqzZ6D51fZQoaAZoCWgPQwiw5CoWv5kXwJSGlFKUaBVLMmgWR0DE6ivpfQa8dX2UKGgGaAloD0MIg7709udyH8CUhpRSlGgVSzJoFkdAxOodra/RFHV9lChoBmgJaA9DCPnWh/VGXRfAlIaUUpRoFUsyaBZHQMTqDmhdt2t1fZQoaAZoCWgPQwh9XBsqxikewJSGlFKUaBVLMmgWR0DE6nE6DGtIdX2UKGgGaAloD0MI9bhvtU6cIcCUhpRSlGgVSzJoFkdAxOpiYWtU43V9lChoBmgJaA9DCF6+9WG9URnAlIaUUpRoFUsyaBZHQMTqVEo4MnZ1fZQoaAZoCWgPQwiMnlvoSmwhwJSGlFKUaBVLMmgWR0DE6kT9OymidX2UKGgGaAloD0MIPV+zXDZyJcCUhpRSlGgVSzJoFkdAxOqqDB/I83V9lChoBmgJaA9DCLcqieyDfCfAlIaUUpRoFUsyaBZHQMTqmziCJ411fZQoaAZoCWgPQwj3ViQmqLEawJSGlFKUaBVLMmgWR0DE6o0AaNuMdX2UKGgGaAloD0MIh4cwfhp3IMCUhpRSlGgVSzJoFkdAxOp9wLE1mHV9lChoBmgJaA9DCI5bzM8NNSPAlIaUUpRoFUsyaBZHQMTq5K4QSSN1fZQoaAZoCWgPQwhOKhprf5ccwJSGlFKUaBVLMmgWR0DE6tXyup0fdX2UKGgGaAloD0MIU1kUdlFEHsCUhpRSlGgVSzJoFkdAxOrHvd/KAHV9lChoBmgJaA9DCDv7yoP0TCPAlIaUUpRoFUsyaBZHQMTquGlQ/HJ1fZQoaAZoCWgPQwgyAFRx4zYTwJSGlFKUaBVLMmgWR0DE6x7rAxi5dX2UKGgGaAloD0MITb7Z5sbUEcCUhpRSlGgVSzJoFkdAxOsQKP4mC3V9lChoBmgJaA9DCGnlXmBWqCbAlIaUUpRoFUsyaBZHQMTrAeuV5bB1fZQoaAZoCWgPQwi5jJsaaOYhwJSGlFKUaBVLMmgWR0DE6vKZjQRgdX2UKGgGaAloD0MIREyJJHohIMCUhpRSlGgVSzJoFkdAxOtY619fC3V9lChoBmgJaA9DCAN64c6FESjAlIaUUpRoFUsyaBZHQMTrSiLVFx51fZQoaAZoCWgPQwg+WTFcHegkwJSGlFKUaBVLMmgWR0DE6zvmHP/rdX2UKGgGaAloD0MIHLRXHw9tI8CUhpRSlGgVSzJoFkdAxOssqDK5kXV9lChoBmgJaA9DCC+/02TGcyPAlIaUUpRoFUsyaBZHQMTrksqz7dl1fZQoaAZoCWgPQwicoiO5/PcgwJSGlFKUaBVLMmgWR0DE64P2Cdz5dX2UKGgGaAloD0MIYd7jTBP+IcCUhpRSlGgVSzJoFkdAxOt1uejEenV9lChoBmgJaA9DCBHHuriNliLAlIaUUpRoFUsyaBZHQMTrZmqYJE91fZQoaAZoCWgPQwhfYcH9gCcfwJSGlFKUaBVLMmgWR0DE69BOYYzjdX2UKGgGaAloD0MIlC9oIQHDFMCUhpRSlGgVSzJoFkdAxOvBwFTvRnV9lChoBmgJaA9DCH0HP3EAHRjAlIaUUpRoFUsyaBZHQMTrs5flZHN1fZQoaAZoCWgPQwhBZmfRO60gwJSGlFKUaBVLMmgWR0DE66ReHBUJdX2UKGgGaAloD0MIMH+FzJU5I8CUhpRSlGgVSzJoFkdAxOwmY1pCbHV9lChoBmgJaA9DCI178xsmmh3AlIaUUpRoFUsyaBZHQMTsF9HUc4p1fZQoaAZoCWgPQwj+nlinymcYwJSGlFKUaBVLMmgWR0DE7AnV3EAHdX2UKGgGaAloD0MIYp8AipFFGsCUhpRSlGgVSzJoFkdAxOv6rR0EHXV9lChoBmgJaA9DCLH9ZIwPgyLAlIaUUpRoFUsyaBZHQMTsgQm3OOd1fZQoaAZoCWgPQwj5FWu4yEUkwJSGlFKUaBVLMmgWR0DE7HJwsGxEdX2UKGgGaAloD0MIWTMyyF10HsCUhpRSlGgVSzJoFkdAxOxkXBxgiXV9lChoBmgJaA9DCCR7hJohZSXAlIaUUpRoFUsyaBZHQMTsVVGsmv51fZQoaAZoCWgPQwjWcJF7uvodwJSGlFKUaBVLMmgWR0DE7NlWIXTFdX2UKGgGaAloD0MIgbT/AdZ6EsCUhpRSlGgVSzJoFkdAxOzKt03fh3V9lChoBmgJaA9DCJJAg02d5x/AlIaUUpRoFUsyaBZHQMTsvJg9eQd1fZQoaAZoCWgPQwhfQC/cuVAcwJSGlFKUaBVLMmgWR0DE7K1zltCRdX2UKGgGaAloD0MIv2A3bFv0I8CUhpRSlGgVSzJoFkdAxO06nIhhY3V9lChoBmgJaA9DCJy/CYUICCbAlIaUUpRoFUsyaBZHQMTtLAflp491fZQoaAZoCWgPQwhCPujZrJIhwJSGlFKUaBVLMmgWR0DE7R4HxBmgdX2UKGgGaAloD0MIob36eOiLGsCUhpRSlGgVSzJoFkdAxO0O2bXpW3V9lChoBmgJaA9DCNBFQ8ajtBfAlIaUUpRoFUsyaBZHQMTtm08mrsB1fZQoaAZoCWgPQwj8/PfgtWshwJSGlFKUaBVLMmgWR0DE7Yy6Ymb9dX2UKGgGaAloD0MIHekMjLy8JsCUhpRSlGgVSzJoFkdAxO1+s5GSZHV9lChoBmgJaA9DCETAIVSpeQjAlIaUUpRoFUsyaBZHQMTtb6GHpKV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -8.523256489261986, "std_reward": 1.5937291964265652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-03T21:56:05.924565"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22724ee9de29c81acc7b9d1d2022ee7e83390ce36a6e03b667cbee11d4dd1931
|
3 |
size 2387
|