--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: Entrnal_eyes_data_6_true_agoiment211_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Entrnal_eyes_data_6_true_agoiment211_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1455 - Train Accuracy: 0.9282 - Train Top-3-accuracy: 0.9908 - Validation Loss: 0.3319 - Validation Accuracy: 0.9322 - Validation Top-3-accuracy: 0.9914 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 434, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 1.1623 | 0.5608 | 0.8521 | 0.7419 | 0.7200 | 0.9394 | 0 | | 0.5255 | 0.7824 | 0.9588 | 0.4509 | 0.8190 | 0.9701 | 1 | | 0.3218 | 0.8454 | 0.9759 | 0.3839 | 0.8644 | 0.9803 | 2 | | 0.2230 | 0.8794 | 0.9830 | 0.3494 | 0.8923 | 0.9852 | 3 | | 0.1755 | 0.9022 | 0.9868 | 0.3445 | 0.9104 | 0.9882 | 4 | | 0.1539 | 0.9173 | 0.9892 | 0.3343 | 0.9231 | 0.9901 | 5 | | 0.1455 | 0.9282 | 0.9908 | 0.3319 | 0.9322 | 0.9914 | 6 | ### Framework versions - Transformers 4.44.2 - TensorFlow 2.15.1 - Datasets 3.0.0 - Tokenizers 0.19.1