smatt92 commited on
Commit
49228c2
·
verified ·
1 Parent(s): 483c02b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 264.83 +/- 18.39
20
  name: mean_reward
21
  verified: false
22
  ---
@@ -26,6 +26,8 @@ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
 
 
29
 
30
  ```python
31
  from stable_baselines3 import ...
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 271.39 +/- 12.49
20
  name: mean_reward
21
  verified: false
22
  ---
 
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
 
32
  ```python
33
  from stable_baselines3 import ...
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b87c24031c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b87c2403250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b87c24032e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b87c2403370>", "_build": "<function ActorCriticPolicy._build at 0x7b87c2403400>", "forward": "<function ActorCriticPolicy.forward at 0x7b87c2403490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b87c2403520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b87c24035b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b87c2403640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b87c24036d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b87c2403760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b87c24037f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b87c2404880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715046577935878923, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3EHD3DRXG6pVSmtifiGLI0pmw7Tl3DNQAAgD8AAIA/ALd9vdg30D6KeII8TEeuvghgpb2Ixek6AAAAAAAAAAANI8O9yVGVP//Xs74WNuu+QiSZO46xU74AAAAAAAAAAM20UDvrELA/khOEPJnfq76HWO26HsQ0vQAAAAAAAAAARmUFPtdveLtbcdI18a89s1UTorx6FRa1AACAPwAAgD+zSiA9SifjPlE8KrsCHHi+w9rXu5B2bj0AAAAAAAAAAIC8jb2GDKc/4sYzv/+H/77zl+c8yR0KvQAAAAAAAAAAABWOPcMZTLorbyq8xsM/Na1FhDoJdrO0AACAPwAAAAAzK988HzmIu/pYIzzMA4o8HHC7PItmbL0AAIA/AACAP+ai0j3LFOw+SqY4vqAjZL5QCSG9I+4vOwAAAAAAAAAAM6/xPMOQZDsmVUI+vURyvi6xfD0rnN88AAAAAAAAgD+zLDw99sgNuqoAwTvVEQs4b5kMu9NDrrUAAIA/AACAP1oF0j0c5y687XfyvWlKQL51jA09NiI5PwAAgD8AAIA/mm7jPXO3OT9mmsA8NzO9voaixj1DJE69AAAAAAAAAAAakdI97p5KP5Wl4r2gtrW+EFiGvNG9AL4AAAAAAAAAAHNklz2uh9q6UAOBPMncgzxT2QK8iv1jPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIBtPYWcjKMAWyUTQ4BjAF0lEdAkxrCbYsd1nV9lChoBkdAbyOWGATZhGgHTQ0BaAhHQJMwytnwob51fZQoaAZHQG8DClJpWWBoB01JAWgIR0CTMSKKpDNRdX2UKGgGR0BvPEgKWszVaAdNPAFoCEdAkzFLLEDQq3V9lChoBkdAbsKwAU+LWWgHTUQBaAhHQJMxsinpB5Z1fZQoaAZHQGIednTRYzVoB03oA2gIR0CTMgVHWjGldX2UKGgGR0BwEBrhzeXSaAdNTwFoCEdAkzLsXFcY7HV9lChoBkdAcFD+jdpItmgHTWkBaAhHQJM0Fcu8K5V1fZQoaAZHQHB5NAs052hoB00yAWgIR0CTNfaPjn3ddX2UKGgGR0Bx0tAiV0LdaAdNMAFoCEdAkzYkTL4etHV9lChoBkdAcGyHHWBjF2gHTToBaAhHQJM3f5oGpuN1fZQoaAZHQHEWy/sVtXRoB012AWgIR0CTN5rGipNsdX2UKGgGR0BxKni5uqFRaAdNcQFoCEdAkzvEfPomonV9lChoBkdAcX7G+K0laGgHTR0BaAhHQJM8lKNAC4l1fZQoaAZHQHHVFnyup0hoB000AWgIR0CTPJl9BrvcdX2UKGgGR0ByQ0CQtBfKaAdNMAFoCEdAkzzDfBN21XV9lChoBkdAcPgB/qgRLGgHTcsBaAhHQJM91JQLux91fZQoaAZHQG4SYUN8VpNoB01WAWgIR0CTP1jt5UtJdX2UKGgGR0BwJKLk0aZQaAdNKgFoCEdAkz/y79Q40nV9lChoBkdAZhnoA4n4PGgHTegDaAhHQJNAC9f1Hvt1fZQoaAZHQHATcVDa4+doB01uAWgIR0CTQUcNH6MzdX2UKGgGR0BvJ9lPJq7AaAdNAgFoCEdAk0HPgWJrL3V9lChoBkdAb8JQcghbGGgHTTUBaAhHQJNCIX3xnWd1fZQoaAZHQG7FrvsqriloB00DAmgIR0CTQjUBnzxxdX2UKGgGR0BvmNuUD+zdaAdNNAFoCEdAk0JBMSK3u3V9lChoBkdAcrk6q814xGgHTRUBaAhHQJNCcXQ+lj51fZQoaAZHQHFeQHqu8sdoB00cAWgIR0CTRmPTG5tndX2UKGgGR8AXctRNyo4uaAdL3GgIR0CTRnguRLbpdX2UKGgGR0Bri0BbOeJ6aAdNIAFoCEdAk0aJ53Tuv3V9lChoBkdAb+cEg4ffXWgHTRgBaAhHQJNHSWszVMF1fZQoaAZHQHDLsejmCAdoB01UAWgIR0CTSHYj0L+hdX2UKGgGR0Bxndo9LYf5aAdNFwFoCEdAk0kKs6q82HV9lChoBkdAcx7hDw6QvGgHTZoBaAhHQJNKI+r2g391fZQoaAZHQG9lOWjXWe9oB00zAWgIR0CTS1lme18cdX2UKGgGR0BxZY+QlruZaAdNIAFoCEdAk0u8TFl05nV9lChoBkdAcSybiZOSGWgHTTMBaAhHQJNL6sgdOqN1fZQoaAZHQG/c5U96kZdoB00qAWgIR0CTS/RIz3yqdX2UKGgGR0ByGoFgUlAvaAdN5QJoCEdAk0wbyH2ys3V9lChoBkdAcuKNuLrHEWgHTSwBaAhHQJNMYf5k9U11fZQoaAZHQG6RTZg5R0loB00+AWgIR0CTTJ7aZhKEdX2UKGgGR0Bint/2Cdz5aAdN6ANoCEdAk01aG+K0lnV9lChoBkdAcfOMiKR+0GgHS/5oCEdAk06qmfoRqXV9lChoBkdAbHqcXm/34GgHTSgBaAhHQJNQAkE9t/F1fZQoaAZHQHEUeRgZ0jloB00ZAWgIR0CTUE4vvjOtdX2UKGgGR0ByMLrSmZVoaAdNRgFoCEdAk1D7XDm8unV9lChoBkdAcVZqQRwqAmgHS+1oCEdAk1Fuv2Xb/XV9lChoBkdAcIm4XoC+12gHTRMBaAhHQJNRo3l0YCR1fZQoaAZHQHDuPY4ACGNoB00xAWgIR0CTUglcQiA2dX2UKGgGR0BugKnFYMfBaAdNBwFoCEdAk2e/ustCiXV9lChoBkdAcbC9Hc1wYWgHTRABaAhHQJNnwVi4J/p1fZQoaAZHQHCmE5dWyTpoB00WAWgIR0CTZ8GcnVoYdX2UKGgGR0ByCLjin5zpaAdNLQFoCEdAk2f6U3XI2nV9lChoBkdAcxSCU5dWyWgHTUQBaAhHQJNpQXGff411fZQoaAZHQHCF+so2GZhoB01hAWgIR0CTagiwB5oodX2UKGgGR0BxY6xiXpnpaAdNXQFoCEdAk2rb9deIEnV9lChoBkdARah+BpYcN2gHS9VoCEdAk2tmrGR3eXV9lChoBkdAcaf6tknTiWgHTV0BaAhHQJNr4iwB5op1fZQoaAZHQEP1FS88La5oB00DAWgIR0CTbDsyBTXKdX2UKGgGR0Bxw4ixFAmiaAdNUAFoCEdAk2z5Wq94/3V9lChoBkdAbbh4X40uUWgHTQYBaAhHQJNtei0v4/N1fZQoaAZHQG7cB9b5dnloB00bAWgIR0CTbs8PWhAXdX2UKGgGR0BxJKVbA1vVaAdNdgFoCEdAk2+ZULlV+HV9lChoBkdAcdKa2nbZe2gHTUwBaAhHQJNv/60pmVZ1fZQoaAZHQG7sGHP/rB1oB0v8aAhHQJNwEyJsO5J1fZQoaAZHQHArKRISUTtoB00TAWgIR0CTcLu9OARTdX2UKGgGR0Byg6Il+mWMaAdNEQFoCEdAk3Dd8qnWKHV9lChoBkdAcOB7Gecx02gHTQIBaAhHQJNxi2BreqJ1fZQoaAZHQGHb9deIEbJoB03oA2gIR0CTc31AZ88cdX2UKGgGR0BydXBMzuWsaAdNMQFoCEdAk3PEfYBeX3V9lChoBkdAUWRHLA57xGgHS+ZoCEdAk3Qx3/xUenV9lChoBkdAc8oOyVv/BGgHTSwBaAhHQJN0dDc/MW51fZQoaAZHQEph2mpEQXhoB00RAWgIR0CTdH5DJEH/dX2UKGgGR0BxeKzY287IaAdNtwFoCEdAk3X7lzU7S3V9lChoBkdAchvZNO/L1WgHTVgBaAhHQJN2dBsyi251fZQoaAZHQHEeNWluWKNoB01WAWgIR0CTdyQeV9ncdX2UKGgGR0Bx1ioqCpWFaAdNFgFoCEdAk3iNZV4oqnV9lChoBkdAcI6g1FYuCmgHTTEBaAhHQJN4pakhzNl1fZQoaAZHQHEs4I0IkZ9oB015AWgIR0CTeZwh4dIYdX2UKGgGR0BzSfEehf0FaAdNGAFoCEdAk3nCY9gWrXV9lChoBkdAblQQLeANG2gHTTgBaAhHQJN5+n0kGA11fZQoaAZHQHEogxBVuJloB00VAWgIR0CTeo5gw482dX2UKGgGR0BzFMBq9GqhaAdNbgFoCEdAk3uiaqjrRnV9lChoBkdAcIn9sJpnH2gHTQMBaAhHQJN8Jr9ETg51fZQoaAZHQG87nGbTc7BoB017AWgIR0CTfP2i+L3sdX2UKGgGR0BuhH+yZ8a5aAdNLwFoCEdAk31XztkWh3V9lChoBkdAcTggf2bobGgHTScBaAhHQJN9939rGip1fZQoaAZHQHDB25H3DeloB00wAWgIR0CTfgZFG5MDdX2UKGgGR0BwutbX6InCaAdNCwFoCEdAk35ylN1yNnV9lChoBkdAcYFFYdQwbmgHTSoBaAhHQJN/1bPhQ3x1fZQoaAZHQG7rjLSuyNZoB00hAWgIR0CTgEZPVNHpdX2UKGgGR0BxRDfpD/lyaAdNBwFoCEdAk4DKSs8xK3V9lChoBkdAcsTkUbkwOGgHTQUBaAhHQJOA0dLg4wR1fZQoaAZHQHE7ES26TW5oB00RAWgIR0CTgpH2AXl9dX2UKGgGR0Bwqoo8ZDRdaAdNJwFoCEdAk4NQCfYjB3V9lChoBkdAb2ROfukUK2gHTTQBaAhHQJODs/LTx5N1fZQoaAZHQHE09mcvugJoB00iAWgIR0CThF8ZDRdAdX2UKGgGR0BxpNct5D7ZaAdNGQFoCEdAk4WTiOvMbHV9lChoBkdActdnMMZxaWgHTUkBaAhHQJOIwJzDGcZ1fZQoaAZHQHChE2LpA2RoB00RAWgIR0CTiNPy08eTdX2UKGgGR0Bu7MefZmI1aAdNNAFoCEdAk4mgAAAAAHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e12ff6faa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e12ff6fab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e12ff6fab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e12ff6fac20>", "_build": "<function ActorCriticPolicy._build at 0x7e12ff6facb0>", "forward": "<function ActorCriticPolicy.forward at 0x7e12ff6fad40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e12ff6fadd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e12ff6fae60>", "_predict": "<function ActorCriticPolicy._predict at 0x7e12ff6faef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e12ff6faf80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e12ff6fb010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e12ff6fb0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1307896080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715055796902079776, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAkvbsf9JC7GFequ1QCTzyiRso8hPgzvQAAgD8AAIA/GlXqvcOtDLpuJQW0NI0pLj0o67oekaYzAACAPwAAgD+eppK+Z+89P4JHJb0iheS+gYj1vmCyED0AAAAAAAAAAEAR6j3+XKo97UPbOwbvYb4rEKU8WK9sPQAAAAAAAAAAM4X6PHtqsboSQvo7LEvVuDVMcTo2HsW3AACAPwAAgD+AYBA9HAQdPb0srb0MdZG+W28bvucxRb0AAAAAAAAAACbeY777Dwk/MvwwPoqrs77jFgy+PVvbPQAAAAAAAAAAs3MVPTOaSz9qnsW9pmmrvhpEsz237aW9AAAAAAAAAAAAzSa90yQfPznJNb2jNru+x5fSvSXjn70AAAAAAAAAADO1ST1fMz4+UkYcvqKwr74TCkq9xm9LOwAAAAAAAAAAS2ngvtuqTT8qjPE9elMWv6hC9L4Fmj4+AAAAAAAAAAAQcI6+Wt15vXNd2L0xXZu8epLUPk0sWT0AAIA/AACAP2a13D23XZg/QXuePhMGAr+NLCU+u2EHPgAAAAAAAAAAJhCwvVBB0z4araY+5LCpvswtwbs/ExM+AAAAAAAAAACaCJK9ro+gOfJNULMsP2Kvv9HfOnPQwjMAAIA/AACAP5ruPz2OHsU9CB1Uvkn5fL6yOzC8ihD4vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEm8m4RVZOMAWyUS9yMAXSUR0CfPprGR3eOdX2UKGgGR0BxzIYVIqb0aAdL1mgIR0CfPsphWo3rdX2UKGgGR0By9wXgtOEeaAdL9WgIR0CfPw9WZJCjdX2UKGgGR0BxUWcAiml7aAdL5WgIR0CfPzsFMZgpdX2UKGgGR0ByGsqwyIpIaAdLzWgIR0CfQA8pCrtFdX2UKGgGR0BxvuwNb1RMaAdNDAFoCEdAn0AY3R5TqHV9lChoBkdAcbWnaWX1J2gHS+5oCEdAn0CF4C6pYXV9lChoBkdAcFNYmb9ZR2gHS+NoCEdAn0GCwGGEf3V9lChoBkdAbwmtzS1E3WgHS9poCEdAn0HyTdLxqnV9lChoBkdAcrmhakhzNmgHS99oCEdAn0ILCJoCdXV9lChoBkdAcivO1OTJQ2gHS+1oCEdAn0LELH+6y3V9lChoBkdAcTREaVD8cmgHS+loCEdAn0LXuiN83XV9lChoBkdAcP1n3ta6jGgHS+RoCEdAn0L6OPvKEHV9lChoBkdAcC63fyf+TGgHS9xoCEdAn0MkGmk30nV9lChoBkdAcy9Fr2xptmgHTQMBaAhHQJ9DcmXw9aF1fZQoaAZHQG2N6+nIhhZoB00MAWgIR0CfRDP8Q7LddX2UKGgGR0Bx+IjRlYlqaAdL82gIR0CfRDfoA4n4dX2UKGgGR0Bwe3NcGC7LaAdL72gIR0CfRFc2BJ7LdX2UKGgGR0BM2Qfp2U0OaAdLtmgIR0CfRHNTcZccdX2UKGgGR0Bu16xmkFfRaAdL6WgIR0CfRIPhybQUdX2UKGgGR0BwbEyVObiIaAdL62gIR0CfRL32EkB0dX2UKGgGR0Byd/SPU8V6aAdL4WgIR0CfRVcIqsltdX2UKGgGR0BxaiAnUlRhaAdNBgFoCEdAn0aXG0eEI3V9lChoBkdAcfo+az/p+2gHS+loCEdAn0bnta6jFnV9lChoBkdAc2rdZ7ojfWgHS91oCEdAn0cQDNhVl3V9lChoBkdAcgapWV/tpmgHS+BoCEdAn0c4rSVnmXV9lChoBkdAb3Lgm7aqTGgHS9doCEdAn0e5IUahpXV9lChoBkdAcEHZCOWBz2gHS/FoCEdAn0iQUDdP+HV9lChoBkdAcTuhK15SnGgHTQcBaAhHQJ9JC79Q40d1fZQoaAZHQHLouW4Vh1FoB0v7aAhHQJ9JENNJvpB1fZQoaAZHQHBCy+L3sX1oB0vwaAhHQJ9JIuxrzoV1fZQoaAZHQHAaCa3I+4doB0vmaAhHQJ9J2IznA7B1fZQoaAZHQHBS9uxbB45oB0v6aAhHQJ9KDU6PsAx1fZQoaAZHQHEdz2SMcZNoB0v3aAhHQJ9KLbDdgv11fZQoaAZHQHH0hoRIz31oB00EAWgIR0CfSmCgbp/xdX2UKGgGR0BzNOWldkauaAdL3mgIR0CfSogfU4JedX2UKGgGR0BwVgkY4yXVaAdL/WgIR0CfSpSS/0uldX2UKGgGR0BxH3Uz9CNTaAdNGAFoCEdAn0qwhfShJ3V9lChoBkdAc8uqwhW5pmgHS+BoCEdAn0u/iT+vQnV9lChoBkdAcS/1loUSI2gHS9JoCEdAn0vghGH58HV9lChoBkdAcWU/dZaFEmgHS9xoCEdAn0xCrtE5Q3V9lChoBkdAcO5XOGCZnmgHS9BoCEdAn0x7Wd3B6HV9lChoBkdAb4ZNsWO6umgHS/RoCEdAn0x/oNd7fHV9lChoBkdAcLP3K0UoKGgHS91oCEdAn02eCf6Gg3V9lChoBkdAclXPczqKQGgHS+RoCEdAn04uFL39JnV9lChoBkdAccBeokzGgmgHS+poCEdAn05V1jiGWXV9lChoBkdAcJez4k/r0WgHS/BoCEdAn06GEK3NLXV9lChoBkdAcwg+CsfaH2gHS89oCEdAn07GkrPMS3V9lChoBkdAbtrwuuieumgHS+RoCEdAn092Cdz4lHV9lChoBkdAcdYqjrRjSWgHS9xoCEdAn0+BdhRZU3V9lChoBkdAca+KLKmsNmgHTQIBaAhHQJ9Pnm3fAKx1fZQoaAZHQHGMD63y7PJoB00DAWgIR0CfT9f1pTMrdX2UKGgGR0BysU2Q4jrzaAdL/GgIR0CfUCsgMc6vdX2UKGgGR0BynLAGjbi7aAdNCgFoCEdAn1CqAjIJaHV9lChoBkdAcTEkE9t/F2gHS/FoCEdAn1GF3EAHV3V9lChoBkdAcr4kjX4CZGgHS/toCEdAn1GfHT7VKHV9lChoBkdAcbUb+tKZlWgHS/BoCEdAn1IphKDkEXV9lChoBkdAcJ0Ev0yxiWgHTQ0BaAhHQJ9S3Bk7Oml1fZQoaAZHQG1PIK+i8FpoB0vLaAhHQJ9S/IwM6R11fZQoaAZHQEUJcIqslsxoB0ukaAhHQJ9TebKA8Sx1fZQoaAZHQG5YsiB5HExoB006AWgIR0CfU8eKsMiKdX2UKGgGR0By77yJ9AooaAdNAwFoCEdAn1PUlzEJjXV9lChoBkdAcJ5DIzWPLmgHS+BoCEdAn1Pm0eEIxHV9lChoBkdAc1WcslLOA2gHS+toCEdAn1P0fcN6PnV9lChoBkdAcxKZtelbeWgHS99oCEdAn1UyxqwhXHV9lChoBkdAcZEVVghKUWgHS+hoCEdAn1WyFXaJynV9lChoBkdAcgRpGWldkmgHS+doCEdAn1X+JDVpbnV9lChoBkdAcR+VmjCYTmgHS+BoCEdAn1Y9Hxz7uXV9lChoBkdAc1FYtg8bJmgHTSsBaAhHQJ9WqmdiDul1fZQoaAZHQHI8JZ8rqdJoB0v5aAhHQJ9Xpdld1Md1fZQoaAZHQG4kfz8P4EhoB0vdaAhHQJ9X1LYf4h51fZQoaAZHQHF/SLuQZGdoB0vzaAhHQJ9Yldszl911fZQoaAZHQHEzNNvfj0doB0v0aAhHQJ9ZYN4JNTN1fZQoaAZHQHHHGIj4YaZoB0vcaAhHQJ9ZhH8TBZZ1fZQoaAZHQHBrRmPHT7VoB0vqaAhHQJ9a5/I8yN51fZQoaAZHQHG3dUbT+ehoB0v9aAhHQJ9a58Yyfth1fZQoaAZHQHJSFum78NxoB0vlaAhHQJ9bTpdKNAF1fZQoaAZHQHB5O3Ytg8doB0vlaAhHQJ9bZ9Tgl4V1fZQoaAZHQHGRrmU4aP1oB0v6aAhHQJ9b2xbB42V1fZQoaAZHQHJJgvYe1a5oB0v+aAhHQJ9cD1rZamp1fZQoaAZHQG86paA4GUxoB0v8aAhHQJ9dJE3Kji51fZQoaAZHQHDX/foA4n5oB0vraAhHQJ9diTFERap1fZQoaAZHQHHAnsTnJT5oB00FAWgIR0CfXcEit7rtdX2UKGgGR0BxKqaEzwc6aAdNCgFoCEdAn14Q8r7O3XV9lChoBkdAcF8US7GvOmgHS91oCEdAn15Jy+6AfHV9lChoBkdAb9y3DNyHVWgHS95oCEdAn15t1U2kz3V9lChoBkdAcYODeTFERmgHTR4BaAhHQJ9e/P2PDHh1fZQoaAZHQHJWKEeyRjloB0v+aAhHQJ9fv/kvK2d1fZQoaAZHQHMcdBF/hEVoB0v/aAhHQJ9gdtpEhJR1fZQoaAZHQHBncpb2UStoB0v5aAhHQJ9hXVLBbfR1fZQoaAZHQHKMwwXZXdVoB0v8aAhHQJ9h5F+d9Ul1fZQoaAZHQHHzz8+A3DNoB0vuaAhHQJ9iBxYJVsF1fZQoaAZHQHHAHfMwDeVoB00DAWgIR0CfYgNzr/sFdX2UKGgGR0Bx4AQEpy6uaAdNKgFoCEdAn2K6ttALRnV9lChoBkdAch/8274BWGgHTRQBaAhHQJ9i4WN3np11fZQoaAZHQHEBlHWjGkxoB0vuaAhHQJ9jJDohY/51fZQoaAZHQG8gHOjZcs1oB0vcaAhHQJ9jTqdH2AZ1fZQoaAZHQHCURRAKOT9oB0vfaAhHQJ9j9nqVyFR1fZQoaAZHQHKpBMzuWrxoB0vqaAhHQJ9j/5gw4851fZQoaAZHQHLmnmJWNm1oB0vdaAhHQJ9kvGS6lLx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:753b69750832bb49859248a680d82db18c2c4112ed218d56923625b0c949399b
3
- size 148080
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c296d126d6214f6770ac2270fb7f186f67a2ddf22b6664a46ed25b8725b4d4
3
+ size 147981
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7b87c24031c0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b87c2403250>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b87c24032e0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b87c2403370>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7b87c2403400>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7b87c2403490>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b87c2403520>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b87c24035b0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7b87c2403640>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b87c24036d0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b87c2403760>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b87c24037f0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7b87c2404880>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1715046577935878923,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3EHD3DRXG6pVSmtifiGLI0pmw7Tl3DNQAAgD8AAIA/ALd9vdg30D6KeII8TEeuvghgpb2Ixek6AAAAAAAAAAANI8O9yVGVP//Xs74WNuu+QiSZO46xU74AAAAAAAAAAM20UDvrELA/khOEPJnfq76HWO26HsQ0vQAAAAAAAAAARmUFPtdveLtbcdI18a89s1UTorx6FRa1AACAPwAAgD+zSiA9SifjPlE8KrsCHHi+w9rXu5B2bj0AAAAAAAAAAIC8jb2GDKc/4sYzv/+H/77zl+c8yR0KvQAAAAAAAAAAABWOPcMZTLorbyq8xsM/Na1FhDoJdrO0AACAPwAAAAAzK988HzmIu/pYIzzMA4o8HHC7PItmbL0AAIA/AACAP+ai0j3LFOw+SqY4vqAjZL5QCSG9I+4vOwAAAAAAAAAAM6/xPMOQZDsmVUI+vURyvi6xfD0rnN88AAAAAAAAgD+zLDw99sgNuqoAwTvVEQs4b5kMu9NDrrUAAIA/AACAP1oF0j0c5y687XfyvWlKQL51jA09NiI5PwAAgD8AAIA/mm7jPXO3OT9mmsA8NzO9voaixj1DJE69AAAAAAAAAAAakdI97p5KP5Wl4r2gtrW+EFiGvNG9AL4AAAAAAAAAAHNklz2uh9q6UAOBPMncgzxT2QK8iv1jPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIBtPYWcjKMAWyUTQ4BjAF0lEdAkxrCbYsd1nV9lChoBkdAbyOWGATZhGgHTQ0BaAhHQJMwytnwob51fZQoaAZHQG8DClJpWWBoB01JAWgIR0CTMSKKpDNRdX2UKGgGR0BvPEgKWszVaAdNPAFoCEdAkzFLLEDQq3V9lChoBkdAbsKwAU+LWWgHTUQBaAhHQJMxsinpB5Z1fZQoaAZHQGIednTRYzVoB03oA2gIR0CTMgVHWjGldX2UKGgGR0BwEBrhzeXSaAdNTwFoCEdAkzLsXFcY7HV9lChoBkdAcFD+jdpItmgHTWkBaAhHQJM0Fcu8K5V1fZQoaAZHQHB5NAs052hoB00yAWgIR0CTNfaPjn3ddX2UKGgGR0Bx0tAiV0LdaAdNMAFoCEdAkzYkTL4etHV9lChoBkdAcGyHHWBjF2gHTToBaAhHQJM3f5oGpuN1fZQoaAZHQHEWy/sVtXRoB012AWgIR0CTN5rGipNsdX2UKGgGR0BxKni5uqFRaAdNcQFoCEdAkzvEfPomonV9lChoBkdAcX7G+K0laGgHTR0BaAhHQJM8lKNAC4l1fZQoaAZHQHHVFnyup0hoB000AWgIR0CTPJl9BrvcdX2UKGgGR0ByQ0CQtBfKaAdNMAFoCEdAkzzDfBN21XV9lChoBkdAcPgB/qgRLGgHTcsBaAhHQJM91JQLux91fZQoaAZHQG4SYUN8VpNoB01WAWgIR0CTP1jt5UtJdX2UKGgGR0BwJKLk0aZQaAdNKgFoCEdAkz/y79Q40nV9lChoBkdAZhnoA4n4PGgHTegDaAhHQJNAC9f1Hvt1fZQoaAZHQHATcVDa4+doB01uAWgIR0CTQUcNH6MzdX2UKGgGR0BvJ9lPJq7AaAdNAgFoCEdAk0HPgWJrL3V9lChoBkdAb8JQcghbGGgHTTUBaAhHQJNCIX3xnWd1fZQoaAZHQG7FrvsqriloB00DAmgIR0CTQjUBnzxxdX2UKGgGR0BvmNuUD+zdaAdNNAFoCEdAk0JBMSK3u3V9lChoBkdAcrk6q814xGgHTRUBaAhHQJNCcXQ+lj51fZQoaAZHQHFeQHqu8sdoB00cAWgIR0CTRmPTG5tndX2UKGgGR8AXctRNyo4uaAdL3GgIR0CTRnguRLbpdX2UKGgGR0Bri0BbOeJ6aAdNIAFoCEdAk0aJ53Tuv3V9lChoBkdAb+cEg4ffXWgHTRgBaAhHQJNHSWszVMF1fZQoaAZHQHDLsejmCAdoB01UAWgIR0CTSHYj0L+hdX2UKGgGR0Bxndo9LYf5aAdNFwFoCEdAk0kKs6q82HV9lChoBkdAcx7hDw6QvGgHTZoBaAhHQJNKI+r2g391fZQoaAZHQG9lOWjXWe9oB00zAWgIR0CTS1lme18cdX2UKGgGR0BxZY+QlruZaAdNIAFoCEdAk0u8TFl05nV9lChoBkdAcSybiZOSGWgHTTMBaAhHQJNL6sgdOqN1fZQoaAZHQG/c5U96kZdoB00qAWgIR0CTS/RIz3yqdX2UKGgGR0ByGoFgUlAvaAdN5QJoCEdAk0wbyH2ys3V9lChoBkdAcuKNuLrHEWgHTSwBaAhHQJNMYf5k9U11fZQoaAZHQG6RTZg5R0loB00+AWgIR0CTTJ7aZhKEdX2UKGgGR0Bint/2Cdz5aAdN6ANoCEdAk01aG+K0lnV9lChoBkdAcfOMiKR+0GgHS/5oCEdAk06qmfoRqXV9lChoBkdAbHqcXm/34GgHTSgBaAhHQJNQAkE9t/F1fZQoaAZHQHEUeRgZ0jloB00ZAWgIR0CTUE4vvjOtdX2UKGgGR0ByMLrSmZVoaAdNRgFoCEdAk1D7XDm8unV9lChoBkdAcVZqQRwqAmgHS+1oCEdAk1Fuv2Xb/XV9lChoBkdAcIm4XoC+12gHTRMBaAhHQJNRo3l0YCR1fZQoaAZHQHDuPY4ACGNoB00xAWgIR0CTUglcQiA2dX2UKGgGR0BugKnFYMfBaAdNBwFoCEdAk2e/ustCiXV9lChoBkdAcbC9Hc1wYWgHTRABaAhHQJNnwVi4J/p1fZQoaAZHQHCmE5dWyTpoB00WAWgIR0CTZ8GcnVoYdX2UKGgGR0ByCLjin5zpaAdNLQFoCEdAk2f6U3XI2nV9lChoBkdAcxSCU5dWyWgHTUQBaAhHQJNpQXGff411fZQoaAZHQHCF+so2GZhoB01hAWgIR0CTagiwB5oodX2UKGgGR0BxY6xiXpnpaAdNXQFoCEdAk2rb9deIEnV9lChoBkdARah+BpYcN2gHS9VoCEdAk2tmrGR3eXV9lChoBkdAcaf6tknTiWgHTV0BaAhHQJNr4iwB5op1fZQoaAZHQEP1FS88La5oB00DAWgIR0CTbDsyBTXKdX2UKGgGR0Bxw4ixFAmiaAdNUAFoCEdAk2z5Wq94/3V9lChoBkdAbbh4X40uUWgHTQYBaAhHQJNtei0v4/N1fZQoaAZHQG7cB9b5dnloB00bAWgIR0CTbs8PWhAXdX2UKGgGR0BxJKVbA1vVaAdNdgFoCEdAk2+ZULlV+HV9lChoBkdAcdKa2nbZe2gHTUwBaAhHQJNv/60pmVZ1fZQoaAZHQG7sGHP/rB1oB0v8aAhHQJNwEyJsO5J1fZQoaAZHQHArKRISUTtoB00TAWgIR0CTcLu9OARTdX2UKGgGR0Byg6Il+mWMaAdNEQFoCEdAk3Dd8qnWKHV9lChoBkdAcOB7Gecx02gHTQIBaAhHQJNxi2BreqJ1fZQoaAZHQGHb9deIEbJoB03oA2gIR0CTc31AZ88cdX2UKGgGR0BydXBMzuWsaAdNMQFoCEdAk3PEfYBeX3V9lChoBkdAUWRHLA57xGgHS+ZoCEdAk3Qx3/xUenV9lChoBkdAc8oOyVv/BGgHTSwBaAhHQJN0dDc/MW51fZQoaAZHQEph2mpEQXhoB00RAWgIR0CTdH5DJEH/dX2UKGgGR0BxeKzY287IaAdNtwFoCEdAk3X7lzU7S3V9lChoBkdAchvZNO/L1WgHTVgBaAhHQJN2dBsyi251fZQoaAZHQHEeNWluWKNoB01WAWgIR0CTdyQeV9ncdX2UKGgGR0Bx1ioqCpWFaAdNFgFoCEdAk3iNZV4oqnV9lChoBkdAcI6g1FYuCmgHTTEBaAhHQJN4pakhzNl1fZQoaAZHQHEs4I0IkZ9oB015AWgIR0CTeZwh4dIYdX2UKGgGR0BzSfEehf0FaAdNGAFoCEdAk3nCY9gWrXV9lChoBkdAblQQLeANG2gHTTgBaAhHQJN5+n0kGA11fZQoaAZHQHEogxBVuJloB00VAWgIR0CTeo5gw482dX2UKGgGR0BzFMBq9GqhaAdNbgFoCEdAk3uiaqjrRnV9lChoBkdAcIn9sJpnH2gHTQMBaAhHQJN8Jr9ETg51fZQoaAZHQG87nGbTc7BoB017AWgIR0CTfP2i+L3sdX2UKGgGR0BuhH+yZ8a5aAdNLwFoCEdAk31XztkWh3V9lChoBkdAcTggf2bobGgHTScBaAhHQJN9939rGip1fZQoaAZHQHDB25H3DeloB00wAWgIR0CTfgZFG5MDdX2UKGgGR0BwutbX6InCaAdNCwFoCEdAk35ylN1yNnV9lChoBkdAcYFFYdQwbmgHTSoBaAhHQJN/1bPhQ3x1fZQoaAZHQG7rjLSuyNZoB00hAWgIR0CTgEZPVNHpdX2UKGgGR0BxRDfpD/lyaAdNBwFoCEdAk4DKSs8xK3V9lChoBkdAcsTkUbkwOGgHTQUBaAhHQJOA0dLg4wR1fZQoaAZHQHE7ES26TW5oB00RAWgIR0CTgpH2AXl9dX2UKGgGR0Bwqoo8ZDRdaAdNJwFoCEdAk4NQCfYjB3V9lChoBkdAb2ROfukUK2gHTTQBaAhHQJODs/LTx5N1fZQoaAZHQHE09mcvugJoB00iAWgIR0CThF8ZDRdAdX2UKGgGR0BxpNct5D7ZaAdNGQFoCEdAk4WTiOvMbHV9lChoBkdActdnMMZxaWgHTUkBaAhHQJOIwJzDGcZ1fZQoaAZHQHChE2LpA2RoB00RAWgIR0CTiNPy08eTdX2UKGgGR0Bu7MefZmI1aAdNNAFoCEdAk4mgAAAAAHVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
@@ -77,14 +77,14 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e12ff6faa70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e12ff6fab00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e12ff6fab90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e12ff6fac20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e12ff6facb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e12ff6fad40>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e12ff6fadd0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e12ff6fae60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e12ff6faef0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e12ff6faf80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e12ff6fb010>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e12ff6fb0a0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e1307896080>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2031616,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1715055796902079776,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAkvbsf9JC7GFequ1QCTzyiRso8hPgzvQAAgD8AAIA/GlXqvcOtDLpuJQW0NI0pLj0o67oekaYzAACAPwAAgD+eppK+Z+89P4JHJb0iheS+gYj1vmCyED0AAAAAAAAAAEAR6j3+XKo97UPbOwbvYb4rEKU8WK9sPQAAAAAAAAAAM4X6PHtqsboSQvo7LEvVuDVMcTo2HsW3AACAPwAAgD+AYBA9HAQdPb0srb0MdZG+W28bvucxRb0AAAAAAAAAACbeY777Dwk/MvwwPoqrs77jFgy+PVvbPQAAAAAAAAAAs3MVPTOaSz9qnsW9pmmrvhpEsz237aW9AAAAAAAAAAAAzSa90yQfPznJNb2jNru+x5fSvSXjn70AAAAAAAAAADO1ST1fMz4+UkYcvqKwr74TCkq9xm9LOwAAAAAAAAAAS2ngvtuqTT8qjPE9elMWv6hC9L4Fmj4+AAAAAAAAAAAQcI6+Wt15vXNd2L0xXZu8epLUPk0sWT0AAIA/AACAP2a13D23XZg/QXuePhMGAr+NLCU+u2EHPgAAAAAAAAAAJhCwvVBB0z4araY+5LCpvswtwbs/ExM+AAAAAAAAAACaCJK9ro+gOfJNULMsP2Kvv9HfOnPQwjMAAIA/AACAP5ruPz2OHsU9CB1Uvkn5fL6yOzC8ihD4vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEm8m4RVZOMAWyUS9yMAXSUR0CfPprGR3eOdX2UKGgGR0BxzIYVIqb0aAdL1mgIR0CfPsphWo3rdX2UKGgGR0By9wXgtOEeaAdL9WgIR0CfPw9WZJCjdX2UKGgGR0BxUWcAiml7aAdL5WgIR0CfPzsFMZgpdX2UKGgGR0ByGsqwyIpIaAdLzWgIR0CfQA8pCrtFdX2UKGgGR0BxvuwNb1RMaAdNDAFoCEdAn0AY3R5TqHV9lChoBkdAcbWnaWX1J2gHS+5oCEdAn0CF4C6pYXV9lChoBkdAcFNYmb9ZR2gHS+NoCEdAn0GCwGGEf3V9lChoBkdAbwmtzS1E3WgHS9poCEdAn0HyTdLxqnV9lChoBkdAcrmhakhzNmgHS99oCEdAn0ILCJoCdXV9lChoBkdAcivO1OTJQ2gHS+1oCEdAn0LELH+6y3V9lChoBkdAcTREaVD8cmgHS+loCEdAn0LXuiN83XV9lChoBkdAcP1n3ta6jGgHS+RoCEdAn0L6OPvKEHV9lChoBkdAcC63fyf+TGgHS9xoCEdAn0MkGmk30nV9lChoBkdAcy9Fr2xptmgHTQMBaAhHQJ9DcmXw9aF1fZQoaAZHQG2N6+nIhhZoB00MAWgIR0CfRDP8Q7LddX2UKGgGR0Bx+IjRlYlqaAdL82gIR0CfRDfoA4n4dX2UKGgGR0Bwe3NcGC7LaAdL72gIR0CfRFc2BJ7LdX2UKGgGR0BM2Qfp2U0OaAdLtmgIR0CfRHNTcZccdX2UKGgGR0Bu16xmkFfRaAdL6WgIR0CfRIPhybQUdX2UKGgGR0BwbEyVObiIaAdL62gIR0CfRL32EkB0dX2UKGgGR0Byd/SPU8V6aAdL4WgIR0CfRVcIqsltdX2UKGgGR0BxaiAnUlRhaAdNBgFoCEdAn0aXG0eEI3V9lChoBkdAcfo+az/p+2gHS+loCEdAn0bnta6jFnV9lChoBkdAc2rdZ7ojfWgHS91oCEdAn0cQDNhVl3V9lChoBkdAcgapWV/tpmgHS+BoCEdAn0c4rSVnmXV9lChoBkdAb3Lgm7aqTGgHS9doCEdAn0e5IUahpXV9lChoBkdAcEHZCOWBz2gHS/FoCEdAn0iQUDdP+HV9lChoBkdAcTuhK15SnGgHTQcBaAhHQJ9JC79Q40d1fZQoaAZHQHLouW4Vh1FoB0v7aAhHQJ9JENNJvpB1fZQoaAZHQHBCy+L3sX1oB0vwaAhHQJ9JIuxrzoV1fZQoaAZHQHAaCa3I+4doB0vmaAhHQJ9J2IznA7B1fZQoaAZHQHBS9uxbB45oB0v6aAhHQJ9KDU6PsAx1fZQoaAZHQHEdz2SMcZNoB0v3aAhHQJ9KLbDdgv11fZQoaAZHQHH0hoRIz31oB00EAWgIR0CfSmCgbp/xdX2UKGgGR0BzNOWldkauaAdL3mgIR0CfSogfU4JedX2UKGgGR0BwVgkY4yXVaAdL/WgIR0CfSpSS/0uldX2UKGgGR0BxH3Uz9CNTaAdNGAFoCEdAn0qwhfShJ3V9lChoBkdAc8uqwhW5pmgHS+BoCEdAn0u/iT+vQnV9lChoBkdAcS/1loUSI2gHS9JoCEdAn0vghGH58HV9lChoBkdAcWU/dZaFEmgHS9xoCEdAn0xCrtE5Q3V9lChoBkdAcO5XOGCZnmgHS9BoCEdAn0x7Wd3B6HV9lChoBkdAb4ZNsWO6umgHS/RoCEdAn0x/oNd7fHV9lChoBkdAcLP3K0UoKGgHS91oCEdAn02eCf6Gg3V9lChoBkdAclXPczqKQGgHS+RoCEdAn04uFL39JnV9lChoBkdAccBeokzGgmgHS+poCEdAn05V1jiGWXV9lChoBkdAcJez4k/r0WgHS/BoCEdAn06GEK3NLXV9lChoBkdAcwg+CsfaH2gHS89oCEdAn07GkrPMS3V9lChoBkdAbtrwuuieumgHS+RoCEdAn092Cdz4lHV9lChoBkdAcdYqjrRjSWgHS9xoCEdAn0+BdhRZU3V9lChoBkdAca+KLKmsNmgHTQIBaAhHQJ9Pnm3fAKx1fZQoaAZHQHGMD63y7PJoB00DAWgIR0CfT9f1pTMrdX2UKGgGR0BysU2Q4jrzaAdL/GgIR0CfUCsgMc6vdX2UKGgGR0BynLAGjbi7aAdNCgFoCEdAn1CqAjIJaHV9lChoBkdAcTEkE9t/F2gHS/FoCEdAn1GF3EAHV3V9lChoBkdAcr4kjX4CZGgHS/toCEdAn1GfHT7VKHV9lChoBkdAcbUb+tKZlWgHS/BoCEdAn1IphKDkEXV9lChoBkdAcJ0Ev0yxiWgHTQ0BaAhHQJ9S3Bk7Oml1fZQoaAZHQG1PIK+i8FpoB0vLaAhHQJ9S/IwM6R11fZQoaAZHQEUJcIqslsxoB0ukaAhHQJ9TebKA8Sx1fZQoaAZHQG5YsiB5HExoB006AWgIR0CfU8eKsMiKdX2UKGgGR0By77yJ9AooaAdNAwFoCEdAn1PUlzEJjXV9lChoBkdAcJ5DIzWPLmgHS+BoCEdAn1Pm0eEIxHV9lChoBkdAc1WcslLOA2gHS+toCEdAn1P0fcN6PnV9lChoBkdAcxKZtelbeWgHS99oCEdAn1UyxqwhXHV9lChoBkdAcZEVVghKUWgHS+hoCEdAn1WyFXaJynV9lChoBkdAcgRpGWldkmgHS+doCEdAn1X+JDVpbnV9lChoBkdAcR+VmjCYTmgHS+BoCEdAn1Y9Hxz7uXV9lChoBkdAc1FYtg8bJmgHTSsBaAhHQJ9WqmdiDul1fZQoaAZHQHI8JZ8rqdJoB0v5aAhHQJ9Xpdld1Md1fZQoaAZHQG4kfz8P4EhoB0vdaAhHQJ9X1LYf4h51fZQoaAZHQHF/SLuQZGdoB0vzaAhHQJ9Yldszl911fZQoaAZHQHEzNNvfj0doB0v0aAhHQJ9ZYN4JNTN1fZQoaAZHQHHHGIj4YaZoB0vcaAhHQJ9ZhH8TBZZ1fZQoaAZHQHBrRmPHT7VoB0vqaAhHQJ9a5/I8yN51fZQoaAZHQHG3dUbT+ehoB0v9aAhHQJ9a58Yyfth1fZQoaAZHQHJSFum78NxoB0vlaAhHQJ9bTpdKNAF1fZQoaAZHQHB5O3Ytg8doB0vlaAhHQJ9bZ9Tgl4V1fZQoaAZHQHGRrmU4aP1oB0v6aAhHQJ9b2xbB42V1fZQoaAZHQHJJgvYe1a5oB0v+aAhHQJ9cD1rZamp1fZQoaAZHQG86paA4GUxoB0v8aAhHQJ9dJE3Kji51fZQoaAZHQHDX/foA4n5oB0vraAhHQJ9diTFERap1fZQoaAZHQHHAnsTnJT5oB00FAWgIR0CfXcEit7rtdX2UKGgGR0BxKqaEzwc6aAdNCgFoCEdAn14Q8r7O3XV9lChoBkdAcF8US7GvOmgHS91oCEdAn15Jy+6AfHV9lChoBkdAb9y3DNyHVWgHS95oCEdAn15t1U2kz3V9lChoBkdAcYODeTFERmgHTR4BaAhHQJ9e/P2PDHh1fZQoaAZHQHJWKEeyRjloB0v+aAhHQJ9fv/kvK2d1fZQoaAZHQHMcdBF/hEVoB0v/aAhHQJ9gdtpEhJR1fZQoaAZHQHBncpb2UStoB0v5aAhHQJ9hXVLBbfR1fZQoaAZHQHKMwwXZXdVoB0v8aAhHQJ9h5F+d9Ul1fZQoaAZHQHHzz8+A3DNoB0vuaAhHQJ9iBxYJVsF1fZQoaAZHQHHAHfMwDeVoB00DAWgIR0CfYgNzr/sFdX2UKGgGR0Bx4AQEpy6uaAdNKgFoCEdAn2K6ttALRnV9lChoBkdAch/8274BWGgHTRQBaAhHQJ9i4WN3np11fZQoaAZHQHEBlHWjGkxoB0vuaAhHQJ9jJDohY/51fZQoaAZHQG8gHOjZcs1oB0vcaAhHQJ9jTqdH2AZ1fZQoaAZHQHCURRAKOT9oB0vfaAhHQJ9j9nqVyFR1fZQoaAZHQHKpBMzuWrxoB0vqaAhHQJ9j/5gw4851fZQoaAZHQHLmnmJWNm1oB0vdaAhHQJ9kvGS6lLx1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 4096,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 8,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:865e67a801a8eb3f87805996ffae0ef6ade0043ace63f662825ecff3507cfc66
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dce3c294e8e0787f79ddce7011f15fefc45e5629287c49ce44af23ba5ae1a0b
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:134a5eba713227df9648eba936b363e5891d3372f8acf1c2dc3368d7e8c2f80a
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea6f7830843587ae1e02bf87860e9c13167a117f6422a5d8d6c9a00fffad6e39
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 264.82885980000003, "std_reward": 18.38681290497151, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-07T02:11:59.693612"}
 
1
+ {"mean_reward": 271.3888995, "std_reward": 12.48725427363831, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-07T04:58:12.140662"}