File size: 1,999 Bytes
fb165d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: darija_test3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# darija_test3

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4497
- Accuracy: 0.8177

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4385        | 1.0   | 192  | 0.4618          | 0.8047   |
| 0.3433        | 2.0   | 384  | 0.4497          | 0.8177   |
| 0.6551        | 3.0   | 576  | 0.6499          | 0.6510   |
| 0.6284        | 4.0   | 768  | 0.6556          | 0.6510   |
| 0.6402        | 5.0   | 960  | 0.6473          | 0.6510   |
| 0.6538        | 6.0   | 1152 | 0.6470          | 0.6510   |
| 0.7309        | 7.0   | 1344 | 0.6477          | 0.6510   |
| 0.6416        | 8.0   | 1536 | 0.6472          | 0.6510   |
| 0.5665        | 9.0   | 1728 | 0.6625          | 0.6510   |
| 0.607         | 10.0  | 1920 | 0.6501          | 0.6510   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1