Update pipeline.py
Browse files- pipeline.py +7 -1
pipeline.py
CHANGED
@@ -1058,6 +1058,10 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1058 |
noise_pred_text = noise_pred_text[:, :, :-wrap_count, :, :]
|
1059 |
noise_pred_uncond_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_uncond
|
1060 |
noise_pred_text_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_text
|
|
|
|
|
|
|
|
|
1061 |
|
1062 |
# set the step index to the current batch
|
1063 |
self.scheduler._step_index = i
|
@@ -1065,12 +1069,14 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1065 |
# perform guidance
|
1066 |
if do_classifier_free_guidance:
|
1067 |
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
|
|
|
1068 |
noise_pred_uncond = noise_pred_uncond_sum / latent_counter
|
1069 |
noise_pred_text = noise_pred_text_sum / latent_counter
|
1070 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1071 |
-
|
1072 |
# compute the previous noisy sample x_t -> x_t-1
|
1073 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
1074 |
|
1075 |
# call the callback, if provided
|
1076 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
1058 |
noise_pred_text = noise_pred_text[:, :, :-wrap_count, :, :]
|
1059 |
noise_pred_uncond_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_uncond
|
1060 |
noise_pred_text_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_text
|
1061 |
+
|
1062 |
+
# print min and max values of noise_pred_uncond_sum and noise_pred_text_sum
|
1063 |
+
print(f"noise_pred_uncond_sum min: {noise_pred_uncond_sum.min()} max: {noise_pred_uncond_sum.max()}")
|
1064 |
+
print(f"noise_pred_text_sum min: {noise_pred_text_sum.min()} max: {noise_pred_text_sum.max()}")
|
1065 |
|
1066 |
# set the step index to the current batch
|
1067 |
self.scheduler._step_index = i
|
|
|
1069 |
# perform guidance
|
1070 |
if do_classifier_free_guidance:
|
1071 |
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
|
1072 |
+
print(f"latent_counter min: {latent_counter.min()} max: {latent_counter.max()}")
|
1073 |
noise_pred_uncond = noise_pred_uncond_sum / latent_counter
|
1074 |
noise_pred_text = noise_pred_text_sum / latent_counter
|
1075 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1076 |
+
|
1077 |
# compute the previous noisy sample x_t -> x_t-1
|
1078 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1079 |
+
print(f"latents min: {latents.min()} max: {latents.max()}")
|
1080 |
|
1081 |
# call the callback, if provided
|
1082 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|