Update pipeline.py
Browse files- pipeline.py +7 -3
pipeline.py
CHANGED
@@ -1036,8 +1036,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1036 |
|
1037 |
context_indexes = context_scheduler(context_size, overlap, step, num_frames, len(timesteps))
|
1038 |
|
1039 |
-
print(f"Context indexes: {context_indexes}")
|
1040 |
-
|
1041 |
# Denoising loop
|
1042 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1043 |
with self.progress_bar(total=len(timesteps)) as progress_bar:
|
@@ -1079,13 +1077,19 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1079 |
|
1080 |
# set the step index to the current batch
|
1081 |
self.scheduler._step_index = i
|
1082 |
-
|
|
|
|
|
|
|
1083 |
# perform guidance
|
1084 |
if do_classifier_free_guidance:
|
1085 |
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
|
1086 |
noise_pred_uncond = noise_pred_uncond_sum / latent_counter
|
1087 |
noise_pred_text = noise_pred_text_sum / latent_counter
|
1088 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
1089 |
|
1090 |
# compute the previous noisy sample x_t -> x_t-1
|
1091 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
1036 |
|
1037 |
context_indexes = context_scheduler(context_size, overlap, step, num_frames, len(timesteps))
|
1038 |
|
|
|
|
|
1039 |
# Denoising loop
|
1040 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1041 |
with self.progress_bar(total=len(timesteps)) as progress_bar:
|
|
|
1077 |
|
1078 |
# set the step index to the current batch
|
1079 |
self.scheduler._step_index = i
|
1080 |
+
|
1081 |
+
print("latent_counter", latent_counter)
|
1082 |
+
print("current_context_indexes", current_context_indexes)
|
1083 |
+
|
1084 |
# perform guidance
|
1085 |
if do_classifier_free_guidance:
|
1086 |
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
|
1087 |
noise_pred_uncond = noise_pred_uncond_sum / latent_counter
|
1088 |
noise_pred_text = noise_pred_text_sum / latent_counter
|
1089 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1090 |
+
|
1091 |
+
# print min and max
|
1092 |
+
print("noise_pred: ", noise_pred.min(), noise_pred.max())
|
1093 |
|
1094 |
# compute the previous noisy sample x_t -> x_t-1
|
1095 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|