smoothieAI commited on
Commit
a06bb78
·
verified ·
1 Parent(s): 1ee3c52

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +0 -19
pipeline.py CHANGED
@@ -1094,10 +1094,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1094
  noise_pred_uncond_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1095
  noise_pred_text_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1096
  latent_counter = torch.zeros(num_frames).to(device).to(dtype=torch.float16)
1097
- max_sum = 0
1098
- min_sum = 0
1099
- max_sum_cond = 0
1100
- min_sum_cond = 0
1101
 
1102
  # foreach context group seperately denoise the current timestep
1103
  for context_group in range(len(context_indexes[i])):
@@ -1127,11 +1123,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1127
  # add the ending frames from noise_pred_uncond to the start of the noise_pred_uncond_sum
1128
  noise_pred_uncond_sum[:, :,current_context_indexes, :, :] += noise_pred_uncond
1129
  noise_pred_text_sum[:, :,current_context_indexes, :, :] += noise_pred_text
1130
- # track the average min and max for normalization
1131
- max_sum += noise_pred_uncond.max()
1132
- min_sum += noise_pred_uncond.min()
1133
- max_sum_cond += noise_pred_text.max()
1134
- min_sum_cond += noise_pred_text.min()
1135
  #increase the counter for the ending frames
1136
  latent_counter[current_context_indexes] += 1
1137
 
@@ -1147,16 +1138,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1147
  noise_pred_uncond = noise_pred_uncond_sum / latent_counter
1148
  noise_pred_text = noise_pred_text_sum / latent_counter
1149
 
1150
- # calculate the average min and max for normalization
1151
- avg_max = max_sum / latent_counter.sum()
1152
- avg_min = min_sum / latent_counter.sum()
1153
- avg_max_cond = max_sum_cond / latent_counter.sum()
1154
- avg_min_cond = min_sum_cond / latent_counter.sum()
1155
-
1156
- # scale the noise predictions to the range of the avg min and max
1157
- noise_pred_uncond = (noise_pred_uncond - avg_min) / (avg_max - avg_min)
1158
- noise_pred_text = (noise_pred_text - avg_min_cond) / (avg_max_cond - avg_min_cond)
1159
-
1160
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1161
 
1162
  # print min and max
 
1094
  noise_pred_uncond_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1095
  noise_pred_text_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1096
  latent_counter = torch.zeros(num_frames).to(device).to(dtype=torch.float16)
 
 
 
 
1097
 
1098
  # foreach context group seperately denoise the current timestep
1099
  for context_group in range(len(context_indexes[i])):
 
1123
  # add the ending frames from noise_pred_uncond to the start of the noise_pred_uncond_sum
1124
  noise_pred_uncond_sum[:, :,current_context_indexes, :, :] += noise_pred_uncond
1125
  noise_pred_text_sum[:, :,current_context_indexes, :, :] += noise_pred_text
 
 
 
 
 
1126
  #increase the counter for the ending frames
1127
  latent_counter[current_context_indexes] += 1
1128
 
 
1138
  noise_pred_uncond = noise_pred_uncond_sum / latent_counter
1139
  noise_pred_text = noise_pred_text_sum / latent_counter
1140
 
 
 
 
 
 
 
 
 
 
 
1141
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1142
 
1143
  # print min and max