Update pipeline.py
Browse files- pipeline.py +8 -2
pipeline.py
CHANGED
@@ -1428,7 +1428,10 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1428 |
|
1429 |
|
1430 |
if self.controlnet != None and i < int(control_end*len(timesteps)):
|
1431 |
-
|
|
|
|
|
|
|
1432 |
current_context_conditioning_frames = conditioning_frames[current_context_indexes, :, :, :]
|
1433 |
current_context_conditioning_frames = torch.cat([current_context_conditioning_frames] * 2) if do_classifier_free_guidance else current_context_conditioning_frames
|
1434 |
|
@@ -1467,8 +1470,10 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1467 |
guess_mode=guess_mode,
|
1468 |
return_dict=False,
|
1469 |
)
|
1470 |
-
print("controlnet time", time.time() - contorl_start)
|
1471 |
|
|
|
|
|
|
|
1472 |
unet_start = time.time()
|
1473 |
# predict the noise residual with the added controlnet residuals
|
1474 |
noise_pred = self.unet(
|
@@ -1480,6 +1485,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1480 |
down_block_additional_residuals=down_block_res_samples,
|
1481 |
mid_block_additional_residual=mid_block_res_sample,
|
1482 |
).sample
|
|
|
1483 |
print("unet time", time.time() - unet_start)
|
1484 |
|
1485 |
else:
|
|
|
1428 |
|
1429 |
|
1430 |
if self.controlnet != None and i < int(control_end*len(timesteps)):
|
1431 |
+
|
1432 |
+
torch.cuda.synchronize() # Synchronize GPU
|
1433 |
+
control_start = time.time()
|
1434 |
+
|
1435 |
current_context_conditioning_frames = conditioning_frames[current_context_indexes, :, :, :]
|
1436 |
current_context_conditioning_frames = torch.cat([current_context_conditioning_frames] * 2) if do_classifier_free_guidance else current_context_conditioning_frames
|
1437 |
|
|
|
1470 |
guess_mode=guess_mode,
|
1471 |
return_dict=False,
|
1472 |
)
|
|
|
1473 |
|
1474 |
+
torch.cuda.synchronize() # Synchronize GPU
|
1475 |
+
print("controlnet time", time.time() - control_start)
|
1476 |
+
torch.cuda.synchronize()
|
1477 |
unet_start = time.time()
|
1478 |
# predict the noise residual with the added controlnet residuals
|
1479 |
noise_pred = self.unet(
|
|
|
1485 |
down_block_additional_residuals=down_block_res_samples,
|
1486 |
mid_block_additional_residual=mid_block_res_sample,
|
1487 |
).sample
|
1488 |
+
torch.cuda.synchronize()
|
1489 |
print("unet time", time.time() - unet_start)
|
1490 |
|
1491 |
else:
|