smoothieAI commited on
Commit
2eb1fa8
·
verified ·
1 Parent(s): 62d7836

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +7 -2
pipeline.py CHANGED
@@ -1407,6 +1407,8 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1407
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1408
  with self.progress_bar(total=len(timesteps)) as progress_bar:
1409
  for i, t in enumerate(timesteps):
 
 
1410
  noise_pred_uncond_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1411
  noise_pred_text_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1412
  latent_counter = torch.zeros(num_frames).to(device).to(dtype=torch.float16)
@@ -1424,7 +1426,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1424
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1425
 
1426
 
1427
- if self.controlnet != None or i > 2:
1428
  contorl_start = time.time()
1429
 
1430
  current_context_conditioning_frames = conditioning_frames[current_context_indexes, :, :, :]
@@ -1467,7 +1469,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1467
  )
1468
  print("controlnet time", time.time() - contorl_start)
1469
 
1470
-
1471
  # predict the noise residual with the added controlnet residuals
1472
  noise_pred = self.unet(
1473
  latent_model_input,
@@ -1478,8 +1480,10 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1478
  down_block_additional_residuals=down_block_res_samples,
1479
  mid_block_additional_residual=mid_block_res_sample,
1480
  ).sample
 
1481
 
1482
  else:
 
1483
  # predict the noise residual without contorlnet
1484
  noise_pred = self.unet(
1485
  latent_model_input,
@@ -1488,6 +1492,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1488
  cross_attention_kwargs=cross_attention_kwargs,
1489
  added_cond_kwargs=added_cond_kwargs,
1490
  ).sample
 
1491
 
1492
  # sum the noise predictions for the unconditional and text conditioned noise
1493
  if do_classifier_free_guidance:
 
1407
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1408
  with self.progress_bar(total=len(timesteps)) as progress_bar:
1409
  for i, t in enumerate(timesteps):
1410
+ print("i", i)
1411
+ print("t", t)
1412
  noise_pred_uncond_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1413
  noise_pred_text_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
1414
  latent_counter = torch.zeros(num_frames).to(device).to(dtype=torch.float16)
 
1426
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1427
 
1428
 
1429
+ if self.controlnet != None and i < 4:
1430
  contorl_start = time.time()
1431
 
1432
  current_context_conditioning_frames = conditioning_frames[current_context_indexes, :, :, :]
 
1469
  )
1470
  print("controlnet time", time.time() - contorl_start)
1471
 
1472
+ unet_start = time.time()
1473
  # predict the noise residual with the added controlnet residuals
1474
  noise_pred = self.unet(
1475
  latent_model_input,
 
1480
  down_block_additional_residuals=down_block_res_samples,
1481
  mid_block_additional_residual=mid_block_res_sample,
1482
  ).sample
1483
+ print("unet time", time.time() - unet_start)
1484
 
1485
  else:
1486
+ unet_start = time.time()
1487
  # predict the noise residual without contorlnet
1488
  noise_pred = self.unet(
1489
  latent_model_input,
 
1492
  cross_attention_kwargs=cross_attention_kwargs,
1493
  added_cond_kwargs=added_cond_kwargs,
1494
  ).sample
1495
+ print("unet time", time.time() - unet_start)
1496
 
1497
  # sum the noise predictions for the unconditional and text conditioned noise
1498
  if do_classifier_free_guidance: