smoothieAI commited on
Commit
5855ff8
·
verified ·
1 Parent(s): f780426

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +1 -5
pipeline.py CHANGED
@@ -1416,8 +1416,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1416
 
1417
  # foreach context group seperately denoise the current timestep
1418
  for context_group in range(len(context_indexes[i])):
1419
- # calculate to current indexes, considering overlap
1420
- prep_time = time.time()
1421
  current_context_indexes = context_indexes[i][context_group]
1422
 
1423
  # select the relevent context from the latents
@@ -1426,7 +1425,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1426
  # expand the latents if we are doing classifier free guidance
1427
  latent_model_input = torch.cat([current_context_latents] * 2) if do_classifier_free_guidance else current_context_latents
1428
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1429
- print("prep time", time.time() - prep_time)
1430
 
1431
 
1432
  if self.controlnet != None and i < int(control_end*len(timesteps)):
@@ -1485,7 +1483,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1485
  print("unet time", time.time() - unet_start)
1486
 
1487
  else:
1488
- unet_start = time.time()
1489
  # predict the noise residual without contorlnet
1490
  noise_pred = self.unet(
1491
  latent_model_input,
@@ -1494,7 +1491,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1494
  cross_attention_kwargs=cross_attention_kwargs,
1495
  added_cond_kwargs=added_cond_kwargs,
1496
  ).sample
1497
- print("unet time", time.time() - unet_start)
1498
 
1499
  # sum the noise predictions for the unconditional and text conditioned noise
1500
  start_guidance_time = time.time()
 
1416
 
1417
  # foreach context group seperately denoise the current timestep
1418
  for context_group in range(len(context_indexes[i])):
1419
+ # calculate to current indexes, considering overlapa
 
1420
  current_context_indexes = context_indexes[i][context_group]
1421
 
1422
  # select the relevent context from the latents
 
1425
  # expand the latents if we are doing classifier free guidance
1426
  latent_model_input = torch.cat([current_context_latents] * 2) if do_classifier_free_guidance else current_context_latents
1427
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
 
1428
 
1429
 
1430
  if self.controlnet != None and i < int(control_end*len(timesteps)):
 
1483
  print("unet time", time.time() - unet_start)
1484
 
1485
  else:
 
1486
  # predict the noise residual without contorlnet
1487
  noise_pred = self.unet(
1488
  latent_model_input,
 
1491
  cross_attention_kwargs=cross_attention_kwargs,
1492
  added_cond_kwargs=added_cond_kwargs,
1493
  ).sample
 
1494
 
1495
  # sum the noise predictions for the unconditional and text conditioned noise
1496
  start_guidance_time = time.time()