Update pipeline.py
Browse files- pipeline.py +3 -3
pipeline.py
CHANGED
@@ -1185,14 +1185,14 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1185 |
if ip_adapter_image is not None:
|
1186 |
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
1187 |
# foreach ip_adapter_image in ip_adapter_image
|
1188 |
-
|
1189 |
# if ip_adapter_image is not list, convert to list
|
1190 |
ip_adapter_image = [ip_adapter_image] if not isinstance(ip_adapter_image, list) else ip_adapter_image
|
1191 |
for image in ip_adapter_image:
|
1192 |
image_embeds, negative_image_embeds = self.encode_image(image, device, num_videos_per_prompt, output_hidden_state)
|
1193 |
if do_classifier_free_guidance:image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1194 |
-
|
1195 |
-
|
1196 |
if self.controlnet != None:
|
1197 |
if isinstance(controlnet, ControlNetModel):
|
1198 |
# conditioning_frames = self.prepare_image(
|
|
|
1185 |
if ip_adapter_image is not None:
|
1186 |
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
1187 |
# foreach ip_adapter_image in ip_adapter_image
|
1188 |
+
image_embed_list = []
|
1189 |
# if ip_adapter_image is not list, convert to list
|
1190 |
ip_adapter_image = [ip_adapter_image] if not isinstance(ip_adapter_image, list) else ip_adapter_image
|
1191 |
for image in ip_adapter_image:
|
1192 |
image_embeds, negative_image_embeds = self.encode_image(image, device, num_videos_per_prompt, output_hidden_state)
|
1193 |
if do_classifier_free_guidance:image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1194 |
+
image_embed_list.append(image_embeds)
|
1195 |
+
image_embeds = image_embed_list
|
1196 |
if self.controlnet != None:
|
1197 |
if isinstance(controlnet, ControlNetModel):
|
1198 |
# conditioning_frames = self.prepare_image(
|