Update pipeline.py
Browse files- pipeline.py +3 -3
pipeline.py
CHANGED
@@ -1447,10 +1447,10 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1447 |
# Infer ControlNet only for the conditional batch.
|
1448 |
control_model_input = latents
|
1449 |
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1450 |
-
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1451 |
else:
|
1452 |
control_model_input = latent_model_input
|
1453 |
-
controlnet_prompt_embeds = prompt_embeds
|
1454 |
controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(len(current_context_indexes), dim=0)
|
1455 |
|
1456 |
if isinstance(controlnet_keep[i], list):
|
@@ -1470,7 +1470,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1470 |
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1471 |
control_model_input,
|
1472 |
t,
|
1473 |
-
encoder_hidden_states=controlnet_prompt_embeds
|
1474 |
controlnet_cond=current_context_conditioning_frames,
|
1475 |
conditioning_scale=cond_scale,
|
1476 |
guess_mode=guess_mode,
|
|
|
1447 |
# Infer ControlNet only for the conditional batch.
|
1448 |
control_model_input = latents
|
1449 |
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1450 |
+
controlnet_prompt_embeds = prompt_embeds[current_prompt_index].chunk(2)[1]
|
1451 |
else:
|
1452 |
control_model_input = latent_model_input
|
1453 |
+
controlnet_prompt_embeds = prompt_embeds[current_prompt_index]
|
1454 |
controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(len(current_context_indexes), dim=0)
|
1455 |
|
1456 |
if isinstance(controlnet_keep[i], list):
|
|
|
1470 |
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1471 |
control_model_input,
|
1472 |
t,
|
1473 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1474 |
controlnet_cond=current_context_conditioning_frames,
|
1475 |
conditioning_scale=cond_scale,
|
1476 |
guess_mode=guess_mode,
|