smoothieAI commited on
Commit
e728b58
·
verified ·
1 Parent(s): 127315d

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +5 -6
pipeline.py CHANGED
@@ -1426,6 +1426,10 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1426
  # expand the latents if we are doing classifier free guidance
1427
  latent_model_input = torch.cat([current_context_latents] * 2) if do_classifier_free_guidance else current_context_latents
1428
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
 
 
 
 
1429
 
1430
  if self.controlnet != None and i < int(control_end*num_inference_steps):
1431
 
@@ -1456,11 +1460,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1456
  control_model_input = control_model_input.reshape(
1457
  (-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
1458
  )
1459
-
1460
-
1461
- # get the current prompt index based on the current context position (for blending between multiple prompts)
1462
- context_position = current_context_indexes[0] % context_size
1463
- current_prompt_index = int(context_position / (context_size / num_prompts))
1464
 
1465
  down_block_res_samples, mid_block_res_sample = self.controlnet(
1466
  control_model_input,
@@ -1488,7 +1487,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1488
  noise_pred = self.unet(
1489
  latent_model_input,
1490
  t,
1491
- encoder_hidden_states=prompt_embeds,
1492
  cross_attention_kwargs=cross_attention_kwargs,
1493
  added_cond_kwargs=added_cond_kwargs,
1494
  ).sample
 
1426
  # expand the latents if we are doing classifier free guidance
1427
  latent_model_input = torch.cat([current_context_latents] * 2) if do_classifier_free_guidance else current_context_latents
1428
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1429
+
1430
+ # get the current prompt index based on the current context position (for blending between multiple prompts)
1431
+ context_position = current_context_indexes[0] % context_size
1432
+ current_prompt_index = int(context_position / (context_size / num_prompts))
1433
 
1434
  if self.controlnet != None and i < int(control_end*num_inference_steps):
1435
 
 
1460
  control_model_input = control_model_input.reshape(
1461
  (-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
1462
  )
 
 
 
 
 
1463
 
1464
  down_block_res_samples, mid_block_res_sample = self.controlnet(
1465
  control_model_input,
 
1487
  noise_pred = self.unet(
1488
  latent_model_input,
1489
  t,
1490
+ encoder_hidden_states=prompt_embeds[current_prompt_index],
1491
  cross_attention_kwargs=cross_attention_kwargs,
1492
  added_cond_kwargs=added_cond_kwargs,
1493
  ).sample