File size: 12,247 Bytes
2fd7ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: febskxmodel_hug_1.skops
widget:
- structuredData:
    backlog_minutes:
    - 246897
    - 265856
    - 622046
    backlog_num_jobs:
    - 211
    - 298
    - 369
    max_minutes:
    - 360
    - 30
    - 2160
    nnodes:
    - 1
    - 1
    - 1
    running_minutes:
    - 1934324
    - 1934324
    - 1934214
    running_num_jobs:
    - 6830
    - 6830
    - 6829
---

# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

[More Information Needed]

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter             | Value                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------|
| memory                     |                                                                                                    |
| steps                      | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] |
| verbose                    | False                                                                                              |
| scale                      | StandardScaler()                                                                                   |
| hgbc                       | HistGradientBoostingClassifier(max_depth=9, max_iter=600)                                          |
| scale__copy                | True                                                                                               |
| scale__with_mean           | True                                                                                               |
| scale__with_std            | True                                                                                               |
| hgbc__categorical_features |                                                                                                    |
| hgbc__class_weight         |                                                                                                    |
| hgbc__early_stopping       | auto                                                                                               |
| hgbc__interaction_cst      |                                                                                                    |
| hgbc__l2_regularization    | 0.0                                                                                                |
| hgbc__learning_rate        | 0.1                                                                                                |
| hgbc__loss                 | log_loss                                                                                           |
| hgbc__max_bins             | 255                                                                                                |
| hgbc__max_depth            | 9                                                                                                  |
| hgbc__max_iter             | 600                                                                                                |
| hgbc__max_leaf_nodes       | 31                                                                                                 |
| hgbc__min_samples_leaf     | 20                                                                                                 |
| hgbc__monotonic_cst        |                                                                                                    |
| hgbc__n_iter_no_change     | 10                                                                                                 |
| hgbc__random_state         |                                                                                                    |
| hgbc__scoring              | loss                                                                                               |
| hgbc__tol                  | 1e-07                                                                                              |
| hgbc__validation_fraction  | 0.1                                                                                                |
| hgbc__verbose              | 0                                                                                                  |
| hgbc__warm_start           | False                                                                                              |

</details>

### Model Plot

<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler()),(&#x27;hgbc&#x27;,HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler()),(&#x27;hgbc&#x27;,HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier(max_depth=9, max_iter=600)</pre></div></div></div></div></div></div></div>

## Evaluation Results

| Metric                | Value              |
|-----------------------|--------------------|
| accuracy              | 0.9079252003561887 |
| classification report | precision    recall  f1-score   support<br /><br />           0       0.94      0.98      0.96      3580<br />           1       0.76      0.55      0.64       415<br />           2       0.63      0.51      0.56       208<br />           3       0.68      0.47      0.55       160<br />           4       0.91      0.94      0.93      1252<br /><br />    accuracy                           0.91      5615<br />   macro avg       0.78      0.69      0.73      5615<br />weighted avg       0.90      0.91      0.90      5615                    |

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# citation_bibtex

bibtex
@inproceedings{...,year={2024}}

# get_started_code

import skops.io as sio 
model = sio.load(file, trusted=unknown_types)

# model_card_authors

Smruti Padhy

# limitations

This model is ready to be used in production.

# model_description

This is a  Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number1

# eval_method

The model is evaluated using test split, on accuracy and F1 score with macro average.

# confusion_matrix

![confusion_matrix](confusion_matrix.png)