Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- wikitext
|
4 |
+
metrics:
|
5 |
+
- perplexity
|
6 |
+
---
|
7 |
+
**N**on-**u**niform **GPTQ** (NuGPTQ) combines [GPTQ](https://arxiv.org/abs/2210.17323), [SqueezeLLM](https://arxiv.org/abs/2306.07629) and [output scaling](https://stephenpanaro.com/blog/llm-quantization-for-iphone) for a competitive whole-tensor (no grouping) LLM compression method.
|
8 |
+
|
9 |
+
Results for Llama-2-7b-hf:
|
10 |
+
|Method |WikitextPPL (↓)|Delta |
|
11 |
+
|-- |-- |-- |
|
12 |
+
|float16 |8.7071 |0 |
|
13 |
+
|AWQ |8.9760 |0.2689|
|
14 |
+
|NuGPTQ (This)|9.2754 |0.5683|
|
15 |
+
|GPTQ† |9.4686 |0.7615|
|
16 |
+
<sub>† g128, desc_act=True</sub>
|
17 |
+
|
18 |
+
<details>
|
19 |
+
<summary>perplexity reproduction steps</summary>
|
20 |
+
|
21 |
+
```shell
|
22 |
+
git clone https://github.com/EleutherAI/lm-evaluation-harness
|
23 |
+
cd lm-evaluation-harness
|
24 |
+
pip install -e .
|
25 |
+
pip install optimum
|
26 |
+
|
27 |
+
huggingface-cli login
|
28 |
+
|
29 |
+
# Set batch size based on your GPU.
|
30 |
+
lm_eval --model hf \
|
31 |
+
--model_args pretrained=meta-llama/Llama-2-7b-hf,dtype="float16" \
|
32 |
+
--tasks wikitext \
|
33 |
+
--batch_size 1
|
34 |
+
|
35 |
+
# hf (pretrained=meta-llama/Llama-2-7b-hf,dtype=float16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
|
36 |
+
# | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
37 |
+
# |--------|------:|------|-----:|---------------|-----:|---|------|
|
38 |
+
# |wikitext| 2|none | 0|word_perplexity|8.7071|± |N/A |
|
39 |
+
# | | |none | 0|byte_perplexity|1.4989|± |N/A |
|
40 |
+
# | | |none | 0|bits_per_byte |0.5839|± |N/A |
|
41 |
+
|
42 |
+
lm_eval --model hf \
|
43 |
+
--model_args pretrained=smpanaro/Llama-2-7b-NuGPTQ,dtype="float16",use_safetensors=True,trust_remote_code=True \
|
44 |
+
--tasks wikitext \
|
45 |
+
--batch_size 1
|
46 |
+
|
47 |
+
# hf (pretrained=smpanaro/llama-2-7b-nugptq,dtype=float16,use_safetensors=True,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
|
48 |
+
# | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
49 |
+
# |--------|------:|------|-----:|---------------|-----:|---|------|
|
50 |
+
# |wikitext| 2|none | 0|word_perplexity|9.2754|± |N/A |
|
51 |
+
# | | |none | 0|byte_perplexity|1.5167|± |N/A |
|
52 |
+
# | | |none | 0|bits_per_byte |0.6009|± |N/A |
|
53 |
+
|
54 |
+
pip install auto-gptq
|
55 |
+
lm_eval --model hf \
|
56 |
+
--model_args pretrained=TheBloke/Llama-2-7B-GPTQ,dtype="float16",revision=gptq-4bit-128g-actorder_True \
|
57 |
+
--tasks wikitext \
|
58 |
+
--batch_size 1
|
59 |
+
|
60 |
+
# hf (pretrained=TheBloke/Llama-2-7B-GPTQ,dtype=float16,revision=gptq-4bit-128g-actorder_True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
|
61 |
+
# | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
62 |
+
# |--------|------:|------|-----:|---------------|-----:|---|------|
|
63 |
+
# |wikitext| 2|none | 0|word_perplexity|9.4686|± |N/A |
|
64 |
+
# | | |none | 0|byte_perplexity|1.5225|± |N/A |
|
65 |
+
# | | |none | 0|bits_per_byte |0.6065|± |N/A |
|
66 |
+
|
67 |
+
lm_eval --model hf \
|
68 |
+
--model_args pretrained=TheBloke/Llama-2-7B-GPTQ,dtype="float16",revision=gptq-4bit-32g-actorder_True \
|
69 |
+
--tasks wikitext \
|
70 |
+
--batch_size 1
|
71 |
+
|
72 |
+
# hf (pretrained=TheBloke/Llama-2-7B-GPTQ,dtype=float16,revision=gptq-4bit-32g-actorder_True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
|
73 |
+
# | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
74 |
+
# |--------|------:|------|-----:|---------------|-----:|---|------|
|
75 |
+
# |wikitext| 2|none | 0|word_perplexity|9.3801|± |N/A |
|
76 |
+
# | | |none | 0|byte_perplexity|1.5199|± |N/A |
|
77 |
+
# | | |none | 0|bits_per_byte |0.6040|± |N/A |
|
78 |
+
|
79 |
+
pip install autoawq
|
80 |
+
lm_eval --model hf \
|
81 |
+
--model_args pretrained=TheBloke/Llama-2-7B-AWQ,dtype="float16" \
|
82 |
+
--tasks wikitext \
|
83 |
+
--batch_size 1
|
84 |
+
|
85 |
+
# hf (pretrained=thebloke/llama-2-7b-awq,dtype=float16), gen_kwargs: (none), limit: none, num_fewshot: none, batch_size: 1
|
86 |
+
# | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
87 |
+
# |--------|------:|------|-----:|---------------|-----:|---|------|
|
88 |
+
# |wikitext| 2|none | 0|word_perplexity|8.9760|± |N/A |
|
89 |
+
# | | |none | 0|byte_perplexity|1.5074|± |N/A |
|
90 |
+
# | | |none | 0|bits_per_byte |0.5921|± |N/A |
|
91 |
+
```
|
92 |
+
|
93 |
+
</details>
|
94 |
+
|
95 |
+
|
96 |
+
The model is fake quantized which means each weight has <= 16 (2<sup>4</sup>) unique values, but they are stored in float16. The uniqueness can be checked as follows:
|
97 |
+
```python
|
98 |
+
from transformers import AutoModelForCausalLM
|
99 |
+
|
100 |
+
model = AutoModelForCausalLM.from_pretrained("smpanaro/Llama-2-7b-NuGPTQ")
|
101 |
+
linear_layers = ["k_proj", "q_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
102 |
+
count = 0
|
103 |
+
for key, tensor in model.state_dict().items():
|
104 |
+
if "weight" not in key:
|
105 |
+
continue
|
106 |
+
if any([l in key for l in linear_layers]):
|
107 |
+
assert tensor.unique().shape[0] <= 16, f"{key} has more than 16 unique values"
|
108 |
+
print("✓", end="", flush=True)
|
109 |
+
count += 1
|
110 |
+
|
111 |
+
print()
|
112 |
+
# 32 model layers * 7 linear layers
|
113 |
+
print(f"{count} out of 224 linear layers have 16 unique values.")
|
114 |
+
```
|