File size: 1,769 Bytes
5699cc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc3770
 
 
 
 
5699cc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc3770
5699cc6
 
 
 
 
 
edc3770
 
 
5699cc6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: billsum_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# billsum_model

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9696
- Rouge1: 0.1826
- Rouge2: 0.1055
- Rougel: 0.1618
- Rougelsum: 0.1663
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 124  | 2.0769          | 0.1768 | 0.1025 | 0.156  | 0.1613    | 20.0    |
| No log        | 2.0   | 248  | 1.9998          | 0.1839 | 0.1056 | 0.1611 | 0.1664    | 20.0    |
| No log        | 3.0   | 372  | 1.9696          | 0.1826 | 0.1055 | 0.1618 | 0.1663    | 20.0    |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0