--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - axolotl - generated_from_trainer model-index: - name: 09e723fd-7159-4981-8333-3a71c269cc2a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloomz-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5507caefc3c08267_train_data.json ds_type: json format: custom path: /workspace/input_data/5507caefc3c08267_train_data.json type: field_instruction: instructions field_output: outputs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: sn56a4/09e723fd-7159-4981-8333-3a71c269cc2a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GB micro_batch_size: 4 mlflow_experiment_name: /tmp/5507caefc3c08267_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: null sequence_len: 512 special_tokens: bos_token: eos_token: unk_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: stgw wandb_runid: null warmup_steps: 100 weight_decay: 0.0 xformers_attention: true ```

# 09e723fd-7159-4981-8333-3a71c269cc2a This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 28.1494 | 0.9990 | 730 | 3.2645 | | 25.3275 | 1.9979 | 1460 | 3.1172 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1