--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: 64920fc2-1b2a-47f8-a166-3d60b4a24631 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: true chat_template: llama3 datasets: - data_files: - 6d3f496dc688ac45_train_data.json ds_type: json format: custom path: /workspace/input_data/6d3f496dc688ac45_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: sn56m1/64920fc2-1b2a-47f8-a166-3d60b4a24631 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/6d3f496dc688ac45_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: yxn1 wandb_runid: null warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# 64920fc2-1b2a-47f8-a166-3d60b4a24631 This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0094 | 0.0027 | 1 | 1.1418 | | 0.9747 | 0.0245 | 9 | 1.0297 | | 0.8548 | 0.0490 | 18 | 0.8922 | | 0.7049 | 0.0735 | 27 | 0.8358 | | 0.8513 | 0.0980 | 36 | 0.8078 | | 0.7588 | 0.1224 | 45 | 0.7915 | | 0.7663 | 0.1469 | 54 | 0.7781 | | 0.7692 | 0.1714 | 63 | 0.7698 | | 0.707 | 0.1959 | 72 | 0.7649 | | 0.7012 | 0.2204 | 81 | 0.7618 | | 0.7719 | 0.2449 | 90 | 0.7605 | | 0.6817 | 0.2694 | 99 | 0.7603 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1