---
library_name: peft
base_model: Korabbit/llama-2-ko-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 64920fc2-1b2a-47f8-a166-3d60b4a24631
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: true
chat_template: llama3
datasets:
- data_files:
- 6d3f496dc688ac45_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6d3f496dc688ac45_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m1/64920fc2-1b2a-47f8-a166-3d60b4a24631
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/6d3f496dc688ac45_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token:
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: yxn1
wandb_runid: null
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
```
# 64920fc2-1b2a-47f8-a166-3d60b4a24631
This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7603
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0094 | 0.0027 | 1 | 1.1418 |
| 0.9747 | 0.0245 | 9 | 1.0297 |
| 0.8548 | 0.0490 | 18 | 0.8922 |
| 0.7049 | 0.0735 | 27 | 0.8358 |
| 0.8513 | 0.0980 | 36 | 0.8078 |
| 0.7588 | 0.1224 | 45 | 0.7915 |
| 0.7663 | 0.1469 | 54 | 0.7781 |
| 0.7692 | 0.1714 | 63 | 0.7698 |
| 0.707 | 0.1959 | 72 | 0.7649 |
| 0.7012 | 0.2204 | 81 | 0.7618 |
| 0.7719 | 0.2449 | 90 | 0.7605 |
| 0.6817 | 0.2694 | 99 | 0.7603 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1