Update README.md
Browse files
README.md
CHANGED
@@ -59,7 +59,33 @@ This checkpoint of EfficientFormer-L1 was trained for 1000 epochs.
|
|
59 |
Use the code below to get started with the model.
|
60 |
|
61 |
```python
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
```
|
64 |
</how_to_start>
|
65 |
|
|
|
59 |
Use the code below to get started with the model.
|
60 |
|
61 |
```python
|
62 |
+
import requests
|
63 |
+
import torch
|
64 |
+
from PIL import Image
|
65 |
+
|
66 |
+
from transformers import EfficientFormerImageProcessor, EfficientFormerForImageClassificationWithTeacher
|
67 |
+
|
68 |
+
# Load a COCO image of two cats to test the model
|
69 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
70 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
71 |
+
|
72 |
+
# Load preprocessor and pretrained model
|
73 |
+
model_name = "huggingface/efficientformer-l1-300"
|
74 |
+
processor = EfficientFormerImageProcessor.from_pretrained(model_name)
|
75 |
+
model = EfficientFormerForImageClassificationWithTeacher.from_pretrained(model_name)
|
76 |
+
|
77 |
+
# Preprocess input image
|
78 |
+
inputs = processor(images=image, return_tensors="pt")
|
79 |
+
|
80 |
+
# Inference
|
81 |
+
with torch.no_grad():
|
82 |
+
outputs = model(**inputs)
|
83 |
+
|
84 |
+
# Print the top ImageNet1k class prediction
|
85 |
+
logits = outputs.logits
|
86 |
+
scores = torch.nn.functional.softmax(logits, dim=1)
|
87 |
+
top_pred_class = torch.argmax(scores, dim=1)
|
88 |
+
print(f"Predicted class: {top_pred_class}")
|
89 |
```
|
90 |
</how_to_start>
|
91 |
|