bradleyfowler123
commited on
Commit
·
1061bb6
1
Parent(s):
4260712
Upload handler.py
Browse files- handler.py +169 -0
handler.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
+
|
6 |
+
MAX_TOKENS_IN_BATCH = 4_000 # Hard limit to prevent OOMs
|
7 |
+
DEFAULT_MAX_NEW_TOKENS = 10 # By default limit the output to 10 tokens
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler:
|
11 |
+
"""
|
12 |
+
This class is used to handle the inference with pre and post process for
|
13 |
+
text2text models. See
|
14 |
+
https://huggingface.co/docs/inference-endpoints/guides/custom_handler for
|
15 |
+
more details.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, path: str = ""):
|
19 |
+
try:
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
21 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(path, device_map="auto")
|
22 |
+
except:
|
23 |
+
import accelerate
|
24 |
+
|
25 |
+
print(f"ACCELERATE VERSION: {accelerate.__version__}")
|
26 |
+
raise
|
27 |
+
|
28 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
29 |
+
"""
|
30 |
+
This method is called when the endpoint is called.
|
31 |
+
|
32 |
+
Arguments
|
33 |
+
---------
|
34 |
+
data (Dict[str, Any]):
|
35 |
+
Must contains the input data under `input` key and any
|
36 |
+
parameters for the inference under `parameters`.
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
output (List[Dict[str, Any]]):
|
41 |
+
A list, length equal to the number of outputted characters,
|
42 |
+
where each item is a dictionary containing `generated_text` (i.e
|
43 |
+
the character), `perplexity` and `first_token_probs`.
|
44 |
+
"""
|
45 |
+
input_texts = data["inputs"]
|
46 |
+
generate_kwargs = data.get("parameters", {})
|
47 |
+
# This is not technically a generate_kwarg, but needs to live under parameters
|
48 |
+
check_first_tokens = generate_kwargs.pop("check_first_tokens", None)
|
49 |
+
max_new_tokens = (
|
50 |
+
generate_kwargs.pop("max_new_tokens", None) or DEFAULT_MAX_NEW_TOKENS
|
51 |
+
)
|
52 |
+
|
53 |
+
# Tokenizing input texts
|
54 |
+
inputs = self.tokenizer(
|
55 |
+
input_texts, return_tensors="pt", padding=True, truncation=True,
|
56 |
+
)["input_ids"]
|
57 |
+
|
58 |
+
# Make sure not to OOM if too many inputs
|
59 |
+
assert inputs.dim() == 2, f"Inputs have dimension {inputs.dim()} != 2"
|
60 |
+
total_tokens = inputs.shape[0] * (inputs.shape[1] + max_new_tokens - 1)
|
61 |
+
assert (
|
62 |
+
total_tokens <= MAX_TOKENS_IN_BATCH
|
63 |
+
), f"Passed {total_tokens} (shape: {inputs.shape}, max_new_tokens: {max_new_tokens}), which is greater than limit of {MAX_TOKENS_IN_BATCH}"
|
64 |
+
|
65 |
+
# Run inference on GPU
|
66 |
+
inputs = inputs.to("cuda:0")
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = self.model.generate(
|
69 |
+
inputs,
|
70 |
+
output_scores=True,
|
71 |
+
return_dict_in_generate=True,
|
72 |
+
max_new_tokens=max_new_tokens,
|
73 |
+
**generate_kwargs,
|
74 |
+
)
|
75 |
+
inputs = inputs.to("cpu")
|
76 |
+
scores = [s.to("cpu") for s in outputs.scores]
|
77 |
+
del outputs
|
78 |
+
|
79 |
+
# process outputs
|
80 |
+
to_return: Dict[str, Any] = {
|
81 |
+
"generated_text": self._output_text_from_scores(scores),
|
82 |
+
"perplexity": [float(p) for p in self._perplexity(scores)],
|
83 |
+
}
|
84 |
+
if check_first_tokens:
|
85 |
+
to_return["first_token_probs"] = self._get_first_token_probs(
|
86 |
+
check_first_tokens, scores
|
87 |
+
)
|
88 |
+
|
89 |
+
# Reformat output to conform to HF Pipeline format
|
90 |
+
return [
|
91 |
+
{key: to_return[key][ndx] for key in to_return.keys()}
|
92 |
+
for ndx in range(len(to_return["generated_text"]))
|
93 |
+
]
|
94 |
+
|
95 |
+
def _output_text_from_scores(self, scores: List[torch.Tensor]) -> List[str]:
|
96 |
+
"""
|
97 |
+
Returns the decoded text from the scores.
|
98 |
+
TODO (ENG-20823): Use the returned sequences so we pay attention to
|
99 |
+
things like bad_words, force_words etc.
|
100 |
+
"""
|
101 |
+
# Always return list format
|
102 |
+
batch_token_ids = [
|
103 |
+
[score[ndx].argmax() for score in scores]
|
104 |
+
for ndx in range(scores[0].shape[0])
|
105 |
+
]
|
106 |
+
# Fix for new tokens being generated after EOS
|
107 |
+
new_batch_token_ids = []
|
108 |
+
for token_ids in batch_token_ids:
|
109 |
+
try:
|
110 |
+
new_token_ids = token_ids[
|
111 |
+
: token_ids.index(self.tokenizer.eos_token_id)
|
112 |
+
]
|
113 |
+
except ValueError:
|
114 |
+
new_token_ids = token_ids[:-1]
|
115 |
+
|
116 |
+
new_batch_token_ids.append(new_token_ids)
|
117 |
+
return self.tokenizer.batch_decode(new_batch_token_ids)
|
118 |
+
|
119 |
+
def _perplexity(self, scores: List[torch.Tensor]) -> List[float]:
|
120 |
+
"""
|
121 |
+
Returns the perplexity (model confidence) of the outputted text.
|
122 |
+
e^( sum(ln(p(word))) / N)
|
123 |
+
|
124 |
+
TODO (ENG-20823): don't include the trailing pad tokens in perplexity
|
125 |
+
"""
|
126 |
+
|
127 |
+
return torch.exp(
|
128 |
+
torch.stack(
|
129 |
+
[score.softmax(axis=1).log().max(axis=1)[0] for score in scores]
|
130 |
+
).sum(axis=0)
|
131 |
+
/ len(scores)
|
132 |
+
).tolist()
|
133 |
+
|
134 |
+
def _get_first_token_probs(
|
135 |
+
self, tokens: List[str], scores: List[torch.Tensor]
|
136 |
+
) -> List[Dict[str, float]]:
|
137 |
+
"""
|
138 |
+
Return the softmaxed probabilities of the specific tokens for each
|
139 |
+
output
|
140 |
+
"""
|
141 |
+
first_token_probs = []
|
142 |
+
softmaxed_scores = scores[0].softmax(axis=1)
|
143 |
+
|
144 |
+
# Finding the correct token IDs
|
145 |
+
# TODO (ENG-20824): Support multi-token words
|
146 |
+
token_ids = {}
|
147 |
+
for token in tokens:
|
148 |
+
encoded_token: List[int] = self.tokenizer.encode(token)
|
149 |
+
if len(encoded_token) > 2:
|
150 |
+
# This means the tokenizer broke the token up into multiple parts
|
151 |
+
token_ids[token] = -1
|
152 |
+
else:
|
153 |
+
token_ids[token] = encoded_token[0]
|
154 |
+
|
155 |
+
# Now finding the scores for each token in the list
|
156 |
+
for seq_ndx in range(scores[0].shape[0]):
|
157 |
+
curr_token_probs: Dict[str, float] = {}
|
158 |
+
|
159 |
+
for token in tokens:
|
160 |
+
if token_ids[token] == -1:
|
161 |
+
curr_token_probs[token] = 0
|
162 |
+
else:
|
163 |
+
curr_token_probs[token] = float(
|
164 |
+
softmaxed_scores[seq_ndx, token_ids[token]]
|
165 |
+
)
|
166 |
+
|
167 |
+
first_token_probs.append(curr_token_probs)
|
168 |
+
|
169 |
+
return first_token_probs
|