File size: 1,511 Bytes
f43371c 246b0e6 f43371c 246b0e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
license: apache-2.0
datasets:
- Intel/orca_dpo_pairs
language:
- en
---
## 模型介绍
- 目标:模型上的DPO训练
- 使用模型:Mistral-7B
- 使用数据:Intel/orca_dpo_pairs(使用全部数据跑了一个epoch)
- 显卡:一张4090,24G
## 使用方法
```
from transformers import AutoTokenizer
import transformers
model = "snowfly/Mistral-7B-orca_dpo_pairs"
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
## 未完待续
### 实验中的问题
实验设置如下:
- per_device_train_batch_size=2
- gradient_accumulation_steps=2
由于每次更新梯度的数据量较小,导致训练前期loss急剧震荡,170step后趋于平稳,直至一个epoch训练结束loss下降不明显,趋于稳定
### 后续工作
- 在更大显存(单机多卡,多机多卡),更多epoch等参数上调整训练
- 考虑不同模型训练后的性能评估(训练数据集质量,模型表现等) |