sobey25701 commited on
Commit
6e01f7a
·
verified ·
1 Parent(s): a4d9cec

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7211
21
+ - Answer: {'precision': 0.7268722466960352, 'recall': 0.8158220024721878, 'f1': 0.7687827606290041, 'number': 809}
22
+ - Header: {'precision': 0.31343283582089554, 'recall': 0.35294117647058826, 'f1': 0.3320158102766798, 'number': 119}
23
+ - Question: {'precision': 0.7878521126760564, 'recall': 0.8403755868544601, 'f1': 0.8132666969559291, 'number': 1065}
24
+ - Overall Precision: 0.7332
25
+ - Overall Recall: 0.8013
26
+ - Overall F1: 0.7658
27
+ - Overall Accuracy: 0.7963
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7901 | 1.0 | 10 | 1.5938 | {'precision': 0.017361111111111112, 'recall': 0.012360939431396786, 'f1': 0.014440433212996389, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.32525252525252524, 'recall': 0.1511737089201878, 'f1': 0.20641025641025643, 'number': 1065} | 0.1597 | 0.0858 | 0.1116 | 0.3415 |
60
+ | 1.4447 | 2.0 | 20 | 1.2469 | {'precision': 0.22497522299306244, 'recall': 0.28059332509270707, 'f1': 0.24972497249724973, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4132890365448505, 'recall': 0.584037558685446, 'f1': 0.4840466926070039, 'number': 1065} | 0.3377 | 0.4260 | 0.3767 | 0.5933 |
61
+ | 1.0816 | 3.0 | 30 | 0.9331 | {'precision': 0.5004995004995005, 'recall': 0.619283065512979, 'f1': 0.5535911602209945, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5584415584415584, 'recall': 0.7267605633802817, 'f1': 0.631578947368421, 'number': 1065} | 0.5260 | 0.6397 | 0.5773 | 0.7095 |
62
+ | 0.8262 | 4.0 | 40 | 0.7964 | {'precision': 0.5772357723577236, 'recall': 0.7021013597033374, 'f1': 0.633575013943112, 'number': 809} | {'precision': 0.15625, 'recall': 0.08403361344537816, 'f1': 0.10928961748633881, 'number': 119} | {'precision': 0.6492659053833605, 'recall': 0.7474178403755869, 'f1': 0.6948930597992143, 'number': 1065} | 0.6042 | 0.6894 | 0.6440 | 0.7450 |
63
+ | 0.6674 | 5.0 | 50 | 0.7441 | {'precision': 0.6445182724252492, 'recall': 0.7194066749072929, 'f1': 0.6799065420560747, 'number': 809} | {'precision': 0.22105263157894736, 'recall': 0.17647058823529413, 'f1': 0.19626168224299065, 'number': 119} | {'precision': 0.6424870466321243, 'recall': 0.8150234741784037, 'f1': 0.7185430463576157, 'number': 1065} | 0.6262 | 0.7381 | 0.6776 | 0.7673 |
64
+ | 0.5736 | 6.0 | 60 | 0.7005 | {'precision': 0.6451942740286298, 'recall': 0.7799752781211372, 'f1': 0.7062115277000558, 'number': 809} | {'precision': 0.20454545454545456, 'recall': 0.15126050420168066, 'f1': 0.17391304347826086, 'number': 119} | {'precision': 0.7412891986062717, 'recall': 0.7990610328638498, 'f1': 0.7690917306823317, 'number': 1065} | 0.6775 | 0.7526 | 0.7131 | 0.7755 |
65
+ | 0.5042 | 7.0 | 70 | 0.6801 | {'precision': 0.6768743400211193, 'recall': 0.792336217552534, 'f1': 0.7300683371298405, 'number': 809} | {'precision': 0.22018348623853212, 'recall': 0.20168067226890757, 'f1': 0.21052631578947367, 'number': 119} | {'precision': 0.7412765957446809, 'recall': 0.8178403755868544, 'f1': 0.7776785714285714, 'number': 1065} | 0.6885 | 0.7707 | 0.7273 | 0.7841 |
66
+ | 0.4479 | 8.0 | 80 | 0.6712 | {'precision': 0.6687565308254964, 'recall': 0.7911001236093943, 'f1': 0.7248018120045301, 'number': 809} | {'precision': 0.20610687022900764, 'recall': 0.226890756302521, 'f1': 0.21600000000000003, 'number': 119} | {'precision': 0.7404006677796328, 'recall': 0.8328638497652582, 'f1': 0.7839151568714097, 'number': 1065} | 0.6798 | 0.7797 | 0.7263 | 0.7900 |
67
+ | 0.3931 | 9.0 | 90 | 0.6806 | {'precision': 0.7054263565891473, 'recall': 0.7873918417799752, 'f1': 0.7441588785046728, 'number': 809} | {'precision': 0.2809917355371901, 'recall': 0.2857142857142857, 'f1': 0.2833333333333333, 'number': 119} | {'precision': 0.7510620220900595, 'recall': 0.8300469483568075, 'f1': 0.7885816235504014, 'number': 1065} | 0.7065 | 0.7802 | 0.7415 | 0.7955 |
68
+ | 0.3875 | 10.0 | 100 | 0.6819 | {'precision': 0.7014767932489452, 'recall': 0.8220024721878862, 'f1': 0.7569721115537849, 'number': 809} | {'precision': 0.3, 'recall': 0.3025210084033613, 'f1': 0.301255230125523, 'number': 119} | {'precision': 0.7633851468048359, 'recall': 0.8300469483568075, 'f1': 0.7953216374269007, 'number': 1065} | 0.7120 | 0.7953 | 0.7514 | 0.7952 |
69
+ | 0.3309 | 11.0 | 110 | 0.7016 | {'precision': 0.7204419889502762, 'recall': 0.8059332509270705, 'f1': 0.7607934655775962, 'number': 809} | {'precision': 0.2949640287769784, 'recall': 0.3445378151260504, 'f1': 0.31782945736434104, 'number': 119} | {'precision': 0.7535864978902953, 'recall': 0.8384976525821596, 'f1': 0.7937777777777778, 'number': 1065} | 0.7115 | 0.7958 | 0.7513 | 0.7969 |
70
+ | 0.3142 | 12.0 | 120 | 0.7081 | {'precision': 0.7178924259055982, 'recall': 0.8084054388133498, 'f1': 0.7604651162790698, 'number': 809} | {'precision': 0.31007751937984496, 'recall': 0.33613445378151263, 'f1': 0.3225806451612903, 'number': 119} | {'precision': 0.7768014059753954, 'recall': 0.8300469483568075, 'f1': 0.8025419881979118, 'number': 1065} | 0.7245 | 0.7918 | 0.7567 | 0.7993 |
71
+ | 0.2992 | 13.0 | 130 | 0.7160 | {'precision': 0.716304347826087, 'recall': 0.8145859085290482, 'f1': 0.7622903412377097, 'number': 809} | {'precision': 0.304, 'recall': 0.31932773109243695, 'f1': 0.31147540983606553, 'number': 119} | {'precision': 0.7796167247386759, 'recall': 0.8403755868544601, 'f1': 0.8088567555354722, 'number': 1065} | 0.7259 | 0.7988 | 0.7606 | 0.7938 |
72
+ | 0.2746 | 14.0 | 140 | 0.7194 | {'precision': 0.7238723872387238, 'recall': 0.8133498145859085, 'f1': 0.7660069848661233, 'number': 809} | {'precision': 0.32061068702290074, 'recall': 0.35294117647058826, 'f1': 0.336, 'number': 119} | {'precision': 0.7859030837004405, 'recall': 0.8375586854460094, 'f1': 0.8109090909090909, 'number': 1065} | 0.7320 | 0.7988 | 0.7639 | 0.7957 |
73
+ | 0.2735 | 15.0 | 150 | 0.7211 | {'precision': 0.7268722466960352, 'recall': 0.8158220024721878, 'f1': 0.7687827606290041, 'number': 809} | {'precision': 0.31343283582089554, 'recall': 0.35294117647058826, 'f1': 0.3320158102766798, 'number': 119} | {'precision': 0.7878521126760564, 'recall': 0.8403755868544601, 'f1': 0.8132666969559291, 'number': 1065} | 0.7332 | 0.8013 | 0.7658 | 0.7963 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.41.2
79
+ - Pytorch 2.3.0+cu121
80
+ - Datasets 2.19.1
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1717137870.15a0395e8bf3.1952.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:40b5e42ffd21aacc0153678c412751a7f4634e0a9f3c59d797371856fa779113
3
- size 14915
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:524960afba95e6635c263873a9ac1b201b35ddd2566deba45d1b88cd9358677b
3
+ size 15984
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a22c294722c424dba4abfdbe75629a713a890b3d393439f2a06db1d342f91b84
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc2a564cb93314a3554cc4bd04ac4ca4ed9e70b0ebb5ef977a4fc0aadc21f6f6
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff