File size: 5,444 Bytes
cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 c837b79 cd5ed10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# %%
import argparse
from tqdm import tqdm
import unicodedata
import re
import pickle
import torch
import NER_medNLP as ner
from EntityNormalizer import EntityNormalizer, DiseaseDict, DrugDict
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# %% global変数として使う
dict_key = {}
# %%
def to_xml(data):
with open("key_attr.pkl", "rb") as tf:
key_attr = pickle.load(tf)
text = data['text']
count = 0
for i, entities in enumerate(data['entities_predicted']):
if entities == "":
return
span = entities['span']
type_id = id_to_tags[entities['type_id']].split('_')
tag = type_id[0]
if not type_id[1] == "":
attr = ' ' + value_to_key(type_id[1], key_attr) + '=' + '"' + type_id[1] + '"'
else:
attr = ""
if 'norm' in entities:
attr = attr + ' norm="' + str(entities['norm']) + '"'
add_tag = "<" + str(tag) + str(attr) + ">"
text = text[:span[0] + count] + add_tag + text[span[0] + count:]
count += len(add_tag)
add_tag = "</" + str(tag) + ">"
text = text[:span[1] + count] + add_tag + text[span[1] + count:]
count += len(add_tag)
return text
def predict_entities(modelpath, sentences_list, len_num_entity_type):
# model = ner.BertForTokenClassification_pl.load_from_checkpoint(
# checkpoint_path = modelpath + ".ckpt"
# )
# bert_tc = model.bert_tc.cuda()
model = ner.BertForTokenClassification_pl(modelpath, num_labels=81, lr=1e-5)
bert_tc = model.bert_tc.to(device)
MODEL_NAME = 'cl-tohoku/bert-base-japanese-whole-word-masking'
tokenizer = ner.NER_tokenizer_BIO.from_pretrained(
MODEL_NAME,
num_entity_type=len_num_entity_type # Entityの数を変え忘れないように!
)
# entities_list = [] # 正解の固有表現を追加していく
entities_predicted_list = [] # 抽出された固有表現を追加していく
text_entities_set = []
for dataset in sentences_list:
text_entities = []
for sample in tqdm(dataset):
text = sample
encoding, spans = tokenizer.encode_plus_untagged(
text, return_tensors='pt'
)
encoding = {k: v.to(device) for k, v in encoding.items()}
with torch.no_grad():
output = bert_tc(**encoding)
scores = output.logits
scores = scores[0].cpu().numpy().tolist()
# 分類スコアを固有表現に変換する
entities_predicted = tokenizer.convert_bert_output_to_entities(
text, scores, spans
)
# entities_list.append(sample['entities'])
entities_predicted_list.append(entities_predicted)
text_entities.append({'text': text, 'entities_predicted': entities_predicted})
text_entities_set.append(text_entities)
return text_entities_set
def combine_sentences(text_entities_set, insert: str):
documents = []
for text_entities in tqdm(text_entities_set):
document = []
for t in text_entities:
document.append(to_xml(t))
documents.append('\n'.join(document))
return documents
def value_to_key(value, key_attr): # attributeから属性名を取得
global dict_key
if dict_key.get(value) != None:
return dict_key[value]
for k in key_attr.keys():
for v in key_attr[k]:
if value == v:
dict_key[v] = k
return k
# %%
def normalize_entities(text_entities_set):
disease_normalizer = EntityNormalizer(DiseaseDict(), matching_threshold=50)
drug_normalizer = EntityNormalizer(DrugDict(), matching_threshold=50)
for entry in text_entities_set:
for text_entities in entry:
entities = text_entities['entities_predicted']
for entity in entities:
tag = id_to_tags[entity['type_id']].split('_')[0]
normalizer = drug_normalizer if tag == 'm-key' \
else disease_normalizer if tag == 'd' \
else None
if normalizer is None:
continue
normalization, score = normalizer.normalize(entity['name'])
entity['norm'] = str(normalization)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict entities from text')
parser.add_argument('--normalize', action=argparse.BooleanOptionalAction, help='Enable entity normalization')
args = parser.parse_args()
with open("id_to_tags.pkl", "rb") as tf:
id_to_tags = pickle.load(tf)
with open("key_attr.pkl", "rb") as tf:
key_attr = pickle.load(tf)
with open('text.txt') as f:
articles_raw = f.read()
article_norm = unicodedata.normalize('NFKC', articles_raw)
sentences_raw = [s for s in re.split(r'\n', articles_raw) if s != '']
sentences_norm = [s for s in re.split(r'\n', article_norm) if s != '']
text_entities_set = predict_entities("sociocom/RealMedNLP_CR_JA", [sentences_norm], len(id_to_tags))
for i, texts_ent in enumerate(text_entities_set[0]):
texts_ent['text'] = sentences_raw[i]
if args.normalize:
normalize_entities(text_entities_set)
documents = combine_sentences(text_entities_set, '\n')
print(documents[0])
|