sofa566 commited on
Commit
1855eb8
·
1 Parent(s): 561e7be

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.5752688172043011
28
  - name: Recall
29
  type: recall
30
- value: 0.2974976830398517
31
  - name: F1
32
  type: f1
33
- value: 0.39218081857055587
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9411312043093497
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.2787
47
- - Precision: 0.5753
48
- - Recall: 0.2975
49
- - F1: 0.3922
50
- - Accuracy: 0.9411
51
 
52
  ## Model description
53
 
@@ -78,13 +78,13 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 213 | 0.2888 | 0.5409 | 0.2512 | 0.3430 | 0.9385 |
82
- | No log | 2.0 | 426 | 0.2787 | 0.5753 | 0.2975 | 0.3922 | 0.9411 |
83
 
84
 
85
  ### Framework versions
86
 
87
- - Transformers 4.29.1
88
  - Pytorch 1.12.1
89
  - Datasets 2.11.0
90
  - Tokenizers 0.11.0
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.5565371024734982
28
  - name: Recall
29
  type: recall
30
+ value: 0.2919369786839666
31
  - name: F1
32
  type: f1
33
+ value: 0.3829787234042553
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9413449617374203
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.2814
47
+ - Precision: 0.5565
48
+ - Recall: 0.2919
49
+ - F1: 0.3830
50
+ - Accuracy: 0.9413
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 213 | 0.2899 | 0.405 | 0.2252 | 0.2895 | 0.9368 |
82
+ | No log | 2.0 | 426 | 0.2814 | 0.5565 | 0.2919 | 0.3830 | 0.9413 |
83
 
84
 
85
  ### Framework versions
86
 
87
+ - Transformers 4.29.2
88
  - Pytorch 1.12.1
89
  - Datasets 2.11.0
90
  - Tokenizers 0.11.0