update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,13 +78,13 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 213 | 0.
|
82 |
-
| No log | 2.0 | 426 | 0.
|
83 |
|
84 |
|
85 |
### Framework versions
|
86 |
|
87 |
-
- Transformers 4.29.
|
88 |
- Pytorch 1.12.1
|
89 |
- Datasets 2.11.0
|
90 |
- Tokenizers 0.11.0
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.5565371024734982
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.2919369786839666
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.3829787234042553
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9413449617374203
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2814
|
47 |
+
- Precision: 0.5565
|
48 |
+
- Recall: 0.2919
|
49 |
+
- F1: 0.3830
|
50 |
+
- Accuracy: 0.9413
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 213 | 0.2899 | 0.405 | 0.2252 | 0.2895 | 0.9368 |
|
82 |
+
| No log | 2.0 | 426 | 0.2814 | 0.5565 | 0.2919 | 0.3830 | 0.9413 |
|
83 |
|
84 |
|
85 |
### Framework versions
|
86 |
|
87 |
+
- Transformers 4.29.2
|
88 |
- Pytorch 1.12.1
|
89 |
- Datasets 2.11.0
|
90 |
- Tokenizers 0.11.0
|