sohm commited on
Commit
e4a4619
·
1 Parent(s): f471866

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1099.23 +/- 137.53
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6423d0584d1623efb2d3c45facdd987e7129e184dac33a3fd26854d3a51d67e
3
+ size 129264
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7faee7aff940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faee7aff9d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faee7affa60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faee7affaf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7faee7affb80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7faee7affc10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faee7affca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faee7affd30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7faee7affdc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faee7affe50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faee7affee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faee7afff70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7faee7afc4b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 978508,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676124509068070166,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHSqjL9YWQE/ZPu7PubtP7/q5J2+Xuj9PZy5H78lSxI+IR1ePzrpCj4oLma/ruDJvR6bFb7jLOI99Gt4PwkO9DsthFE/EFdwPptfUT57Yqu8nxJpvmomaD6Noku+69AivEUCGD+Jkt8+Sw+4Plvg5T6cCj+/isGfv8mgpj4s6pi9dUqdvwtxBL0/vga+SfXKvauZKT/qKCM/z7GkvjPFRb9hmW2/psRQv4LT9T4PdoI/zSlcv/ZJgz3rm/Q+3yYjvWQBYz8Q5Zo+1f1KvpaJVz9FAhg/iZLfPksPuD5b4OU+xBAhvpcLjz648/E+O228PiroTr7aluQ+61IFvoEkGL8S4lS92yKDv6QURDvL5S6/E73oPkb1Jr89QSA/Rb/1Pu2R3T5QSrS/T5HyPvT4Oz1Z+yU/3ba0v9BYwz5audA+/ZDXv4mS3z5LD7g+W+DlPl8JvD5Xe3S9980QP7XvYT7iww2/n77NvO4znT+Y7RG/ZU3ev5xDw76sYFQ+FY9AwLa80j+Z5a05zPJPPT0SAz//ab6/QM4xvRLO9D7BdfK4gR/uP0YhiD6S5AA/JYy7Pv2Q17+Jkt8+Sw+4Plvg5T6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACG5Zw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhF1WPQAAAABR9/S/AAAAAKejhj0AAAAA8hXZPwAAAAC1vPE9AAAAAMPLAEAAAAAAc4KavQAAAAC07Nu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmtgHtwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGbnuz0AAAAAGiLZvwAAAAAs7sy9AAAAADZP2j8AAAAAqir9vQAAAAAmSes/AAAAAGC3GD0AAAAA1ULpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAz1GDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDjuv+9AAAAANpO7b8AAAAAh7cQPAAAAABg+dk/AAAAAA31Ar0AAAAA7vL1PwAAAAD72CY8AAAAAOTb678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhm3O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWoBePQAAAABdP+a/AAAAAChyqb0AAAAAO4v0PwAAAABkw489AAAAAKTn7T8AAAAAy1G1PQAAAAAWAOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.510752,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFHXSWqtHSMAWyUTegDjAF0lEdAm3GfsmfGuXV9lChoBkdAkIbJu2qkumgHTegDaAhHQJuJ8t16mfp1fZQoaAZHQJK5eHRCx/xoB03oA2gIR0CbjEEGJN0vdX2UKGgGR0CT/fVII4VAaAdN6ANoCEdAm4xRaC+UQnV9lChoBkdAkDt/bwjMV2gHTegDaAhHQJuSX6LwWnF1fZQoaAZHQIwGR4GD+R5oB03oA2gIR0CbpM3t8eCDdX2UKGgGR0CNMCtEG7jDaAdN6ANoCEdAm6b0CA+Y+nV9lChoBkdAjelxoZhrnGgHTegDaAhHQJunAuzyBkJ1fZQoaAZHQJHmh+/gzgxoB03oA2gIR0Cbree5nUUgdX2UKGgGR0CQk5BnSOR1aAdN6ANoCEdAm8ZTbJwKjXV9lChoBkdAku9XnhbW3GgHTegDaAhHQJvInFCLMs91fZQoaAZHQJNbM3fhuO1oB03oA2gIR0CbyLKZlWfcdX2UKGgGR0CSyjbLU1AJaAdN6ANoCEdAm86XGbTc7HV9lChoBkdAkf9s3VCoj2gHTegDaAhHQJvgeP7vXsh1fZQoaAZHQJJxHKji4rloB03oA2gIR0Cb4qesgdOqdX2UKGgGR0CRaQG0NSZSaAdN6ANoCEdAm+K1k1/DtXV9lChoBkdAk3aZJf6XSmgHTegDaAhHQJvozUMG5c11fZQoaAZHQJLoJh1DBuZoB03oA2gIR0CcAfVnEl3RdX2UKGgGR0CTw+jQAuIzaAdN6ANoCEdAnAQvbblA/3V9lChoBkdAlW2QyVObiWgHTegDaAhHQJwEPG7z06J1fZQoaAZHQJL/xrAP/aRoB03oA2gIR0CcCjCBPKuCdX2UKGgGR0CTNYwLmZE2aAdN6ANoCEdAnBxMMiKR+3V9lChoBkdAkqvms/6frmgHTegDaAhHQJweeeYlY2d1fZQoaAZHQJJQQTyrgfloB03oA2gIR0CcHondweeWdX2UKGgGR0CU0UP69CeFaAdN6ANoCEdAnCSNu1ndwnV9lChoBkdAkbRKXv6TGGgHTegDaAhHQJw9temelKt1fZQoaAZHQJHSTz6JqItoB03oA2gIR0CcP/xS5y2hdX2UKGgGR0CTO/3irDIjaAdN6ANoCEdAnEAKzzErG3V9lChoBkdAkvZ4P5HmR2gHTegDaAhHQJxGBhvze411fZQoaAZHQJQCICOmzjZoB03oA2gIR0CcV/hEBsAOdX2UKGgGR0CS+7NGViWnaAdN6ANoCEdAnFo0YKpkw3V9lChoBkdAkyIDDKoybmgHTegDaAhHQJxaQelsP8R1fZQoaAZHQJImlsenyd5oB03oA2gIR0CcYDQf6oETdX2UKGgGR0CSUOztkWhzaAdN6ANoCEdAnHkJvUBnz3V9lChoBkdAkW+iyQgcLmgHTegDaAhHQJx72gUUO/d1fZQoaAZHQJBBiZAprk9oB03oA2gIR0Cce+gElme2dX2UKGgGR0CTOSZflZHNaAdN6ANoCEdAnIIDaGpMpXV9lChoBkdAkqVzTrmhd2gHTegDaAhHQJyUcI2OyVx1fZQoaAZHQJJuVhH9WIZoB03oA2gIR0CclrBgeA/cdX2UKGgGR0CUXR3solUqaAdN6ANoCEdAnJa96w+t83V9lChoBkdAlACL6YVqOGgHTegDaAhHQJycy5UcXFd1fZQoaAZHQJMXK2Xsw+NoB03oA2gIR0CctX7sv7FbdX2UKGgGR0CCw+5q/M4caAdN6ANoCEdAnLj6Rhc7hnV9lChoBkdAk50o/eLvTmgHTegDaAhHQJy5CISDh991fZQoaAZHQJKu/ZYgaFVoB03oA2gIR0CcvzQ4jrzHdX2UKGgGR0CUyf8QI2OyaAdN6ANoCEdAnNHSD7Ikq3V9lChoBkdAksZiSV4X42gHTegDaAhHQJzUL6tT1kF1fZQoaAZHQJVQL2dupCNoB03oA2gIR0Cc1D1qnFYMdX2UKGgGR0CQammknCwbaAdN6ANoCEdAnNpRZQpF1HV9lChoBkdAkovJc9nscGgHTegDaAhHQJzyU/fO2Rd1fZQoaAZHQJM/v1RLsa9oB03oA2gIR0Cc9d4WUKRddX2UKGgGR0CU0ElMAWBSaAdN6ANoCEdAnPX2rKeTV3V9lChoBkdAkjSlhw2l22gHTegDaAhHQJz8lXRw6yV1fZQoaAZHQJKXvGwRoRJoB03oA2gIR0CdDuxVQyh0dX2UKGgGR0CSRPIqbz9TaAdN6ANoCEdAnREzmr8zh3V9lChoBkdAj+1lWOp84WgHTegDaAhHQJ0RQZqEeyR1fZQoaAZHQJMlFRLsa89oB03oA2gIR0CdF1t/4IrwdX2UKGgGR0CWadWOZLIxaAdN6ANoCEdAnS45lJ6IFnV9lChoBkdAktc4cNpdr2gHTegDaAhHQJ0xsK+i8Fp1fZQoaAZHQJUUdjNIK+loB03oA2gIR0CdMclqagEmdX2UKGgGR0CTi1el9BrvaAdN6ANoCEdAnTlPChvitXV9lChoBkdAlQs4H1OCXmgHTegDaAhHQJ1L8BbOeJ51fZQoaAZHQJTmOu/1xsFoB03oA2gIR0CdTjnanJkodX2UKGgGR0CW3y2Xb/OuaAdN6ANoCEdAnU5IvN/vv3V9lChoBkdAlULJu63AmGgHTegDaAhHQJ1UlkRSP2h1fZQoaAZHQJQKRxhlUZNoB03oA2gIR0Cda8AnlXA/dX2UKGgGR0CUzuXbdrO8aAdN6ANoCEdAnW8vuG9HtnV9lChoBkdAlSaSsny/bmgHTegDaAhHQJ1vRZNfw7V1fZQoaAZHQJDvsZxaPjpoB03oA2gIR0CddwN+so2GdX2UKGgGR0CU9aJ7b+LnaAdN6ANoCEdAnYlATh5xBHV9lChoBkdAkKHqAJ9iMGgHTegDaAhHQJ2La2uxKQJ1fZQoaAZHQJLBOyKNyYJoB03oA2gIR0Cdi3jGkvbodX2UKGgGR0CTnmZ2pyZKaAdN6ANoCEdAnZGNHhCMP3V9lChoBkdAjZ3Ztm+TNmgHTegDaAhHQJ2m/iHZbpx1fZQoaAZHQJUQrtjTa0xoB03oA2gIR0Cdqopw0fozdX2UKGgGR0CVTnCmMwUQaAdN6ANoCEdAnaqf9pAUtnV9lChoBkdAlEACZ4Oc2GgHTegDaAhHQJ2zZMEidJ91fZQoaAZHQJD5XirDIiloB03oA2gIR0CdxXmWt2cKdX2UKGgGR0CSxRUmD15CaAdN6ANoCEdAnceikKu0TnV9lChoBkdAj5VFoUSIxmgHTegDaAhHQJ3Hs5FPSD11fZQoaAZHQJPGFx82Ji1oB03oA2gIR0CdzcF7D2rXdX2UKGgGR0CS4YZ/Tb35aAdN6ANoCEdAneJrT6SDAnV9lChoBkdAkHEeUQkHEGgHTegDaAhHQJ3l2BUaQ3h1fZQoaAZHQJKUPm+0w8JoB03oA2gIR0Cd5e7HAAQydX2UKGgGR0CO8vM495hSaAdN6ANoCEdAne926f8Mu3V9lChoBkdAjEDNyxRl6WgHTegDaAhHQJ4CgDNhVlx1fZQoaAZHQJCl70RODapoB03oA2gIR0CeBMAVfu1GdX2UKGgGR0CQ8OCZF5OaaAdN6ANoCEdAngTOI/JNkHV9lChoBkdAjJSYxcmjTWgHTegDaAhHQJ4K+wRoRI11fZQoaAZHQJJPjGYKIBRoB03oA2gIR0CeHxvVmSQpdX2UKGgGR0CUNDtVaOghaAdN6ANoCEdAniJs1Gb1AnV9lChoBkdAlcEYUWVNYmgHTegDaAhHQJ4ihKL876p1fZQoaAZHQJMaJib2Dg9oB03oA2gIR0CeK+1TBInSdX2UKGgGR0CVEL86FM7EaAdN6ANoCEdAnj89JFspHHV9lChoBkdAk8XS6DoQnWgHTegDaAhHQJ5Bfk7wKBx1fZQoaAZHQJFoebNKRMhoB03oA2gIR0CeQYyZa3ZxdX2UKGgGR0CTC6r433pOaAdN6ANoCEdAnker1/Ue+3V9lChoBkdAivlGtyPuHGgHTegDaAhHQJ5btI4EOiF1fZQoaAZHQJbpfHzYmLNoB03oA2gIR0CeXtbRWtEHdX2UKGgGR0CTaN4EwFkhaAdN6ANoCEdAnl7q/M4cWHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 30578,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d57a9b2624ed7db0df8638b8c0e35164c4d1b4f764690c586f0bd59fe321b4d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db0b8699b0a1f3dd93041f6576953171eb84bd63ccb98501ebbb915e81bfb22e
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faee7aff940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faee7aff9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faee7affa60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faee7affaf0>", "_build": "<function ActorCriticPolicy._build at 0x7faee7affb80>", "forward": "<function ActorCriticPolicy.forward at 0x7faee7affc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faee7affca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faee7affd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7faee7affdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faee7affe50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faee7affee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faee7afff70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faee7afc4b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 978508, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676124509068070166, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHSqjL9YWQE/ZPu7PubtP7/q5J2+Xuj9PZy5H78lSxI+IR1ePzrpCj4oLma/ruDJvR6bFb7jLOI99Gt4PwkO9DsthFE/EFdwPptfUT57Yqu8nxJpvmomaD6Noku+69AivEUCGD+Jkt8+Sw+4Plvg5T6cCj+/isGfv8mgpj4s6pi9dUqdvwtxBL0/vga+SfXKvauZKT/qKCM/z7GkvjPFRb9hmW2/psRQv4LT9T4PdoI/zSlcv/ZJgz3rm/Q+3yYjvWQBYz8Q5Zo+1f1KvpaJVz9FAhg/iZLfPksPuD5b4OU+xBAhvpcLjz648/E+O228PiroTr7aluQ+61IFvoEkGL8S4lS92yKDv6QURDvL5S6/E73oPkb1Jr89QSA/Rb/1Pu2R3T5QSrS/T5HyPvT4Oz1Z+yU/3ba0v9BYwz5audA+/ZDXv4mS3z5LD7g+W+DlPl8JvD5Xe3S9980QP7XvYT7iww2/n77NvO4znT+Y7RG/ZU3ev5xDw76sYFQ+FY9AwLa80j+Z5a05zPJPPT0SAz//ab6/QM4xvRLO9D7BdfK4gR/uP0YhiD6S5AA/JYy7Pv2Q17+Jkt8+Sw+4Plvg5T6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACG5Zw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhF1WPQAAAABR9/S/AAAAAKejhj0AAAAA8hXZPwAAAAC1vPE9AAAAAMPLAEAAAAAAc4KavQAAAAC07Nu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmtgHtwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGbnuz0AAAAAGiLZvwAAAAAs7sy9AAAAADZP2j8AAAAAqir9vQAAAAAmSes/AAAAAGC3GD0AAAAA1ULpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAz1GDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDjuv+9AAAAANpO7b8AAAAAh7cQPAAAAABg+dk/AAAAAA31Ar0AAAAA7vL1PwAAAAD72CY8AAAAAOTb678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhm3O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWoBePQAAAABdP+a/AAAAAChyqb0AAAAAO4v0PwAAAABkw489AAAAAKTn7T8AAAAAy1G1PQAAAAAWAOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.510752, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFHXSWqtHSMAWyUTegDjAF0lEdAm3GfsmfGuXV9lChoBkdAkIbJu2qkumgHTegDaAhHQJuJ8t16mfp1fZQoaAZHQJK5eHRCx/xoB03oA2gIR0CbjEEGJN0vdX2UKGgGR0CT/fVII4VAaAdN6ANoCEdAm4xRaC+UQnV9lChoBkdAkDt/bwjMV2gHTegDaAhHQJuSX6LwWnF1fZQoaAZHQIwGR4GD+R5oB03oA2gIR0CbpM3t8eCDdX2UKGgGR0CNMCtEG7jDaAdN6ANoCEdAm6b0CA+Y+nV9lChoBkdAjelxoZhrnGgHTegDaAhHQJunAuzyBkJ1fZQoaAZHQJHmh+/gzgxoB03oA2gIR0Cbree5nUUgdX2UKGgGR0CQk5BnSOR1aAdN6ANoCEdAm8ZTbJwKjXV9lChoBkdAku9XnhbW3GgHTegDaAhHQJvInFCLMs91fZQoaAZHQJNbM3fhuO1oB03oA2gIR0CbyLKZlWfcdX2UKGgGR0CSyjbLU1AJaAdN6ANoCEdAm86XGbTc7HV9lChoBkdAkf9s3VCoj2gHTegDaAhHQJvgeP7vXsh1fZQoaAZHQJJxHKji4rloB03oA2gIR0Cb4qesgdOqdX2UKGgGR0CRaQG0NSZSaAdN6ANoCEdAm+K1k1/DtXV9lChoBkdAk3aZJf6XSmgHTegDaAhHQJvozUMG5c11fZQoaAZHQJLoJh1DBuZoB03oA2gIR0CcAfVnEl3RdX2UKGgGR0CTw+jQAuIzaAdN6ANoCEdAnAQvbblA/3V9lChoBkdAlW2QyVObiWgHTegDaAhHQJwEPG7z06J1fZQoaAZHQJL/xrAP/aRoB03oA2gIR0CcCjCBPKuCdX2UKGgGR0CTNYwLmZE2aAdN6ANoCEdAnBxMMiKR+3V9lChoBkdAkqvms/6frmgHTegDaAhHQJweeeYlY2d1fZQoaAZHQJJQQTyrgfloB03oA2gIR0CcHondweeWdX2UKGgGR0CU0UP69CeFaAdN6ANoCEdAnCSNu1ndwnV9lChoBkdAkbRKXv6TGGgHTegDaAhHQJw9temelKt1fZQoaAZHQJHSTz6JqItoB03oA2gIR0CcP/xS5y2hdX2UKGgGR0CTO/3irDIjaAdN6ANoCEdAnEAKzzErG3V9lChoBkdAkvZ4P5HmR2gHTegDaAhHQJxGBhvze411fZQoaAZHQJQCICOmzjZoB03oA2gIR0CcV/hEBsAOdX2UKGgGR0CS+7NGViWnaAdN6ANoCEdAnFo0YKpkw3V9lChoBkdAkyIDDKoybmgHTegDaAhHQJxaQelsP8R1fZQoaAZHQJImlsenyd5oB03oA2gIR0CcYDQf6oETdX2UKGgGR0CSUOztkWhzaAdN6ANoCEdAnHkJvUBnz3V9lChoBkdAkW+iyQgcLmgHTegDaAhHQJx72gUUO/d1fZQoaAZHQJBBiZAprk9oB03oA2gIR0Cce+gElme2dX2UKGgGR0CTOSZflZHNaAdN6ANoCEdAnIIDaGpMpXV9lChoBkdAkqVzTrmhd2gHTegDaAhHQJyUcI2OyVx1fZQoaAZHQJJuVhH9WIZoB03oA2gIR0CclrBgeA/cdX2UKGgGR0CUXR3solUqaAdN6ANoCEdAnJa96w+t83V9lChoBkdAlACL6YVqOGgHTegDaAhHQJycy5UcXFd1fZQoaAZHQJMXK2Xsw+NoB03oA2gIR0CctX7sv7FbdX2UKGgGR0CCw+5q/M4caAdN6ANoCEdAnLj6Rhc7hnV9lChoBkdAk50o/eLvTmgHTegDaAhHQJy5CISDh991fZQoaAZHQJKu/ZYgaFVoB03oA2gIR0CcvzQ4jrzHdX2UKGgGR0CUyf8QI2OyaAdN6ANoCEdAnNHSD7Ikq3V9lChoBkdAksZiSV4X42gHTegDaAhHQJzUL6tT1kF1fZQoaAZHQJVQL2dupCNoB03oA2gIR0Cc1D1qnFYMdX2UKGgGR0CQammknCwbaAdN6ANoCEdAnNpRZQpF1HV9lChoBkdAkovJc9nscGgHTegDaAhHQJzyU/fO2Rd1fZQoaAZHQJM/v1RLsa9oB03oA2gIR0Cc9d4WUKRddX2UKGgGR0CU0ElMAWBSaAdN6ANoCEdAnPX2rKeTV3V9lChoBkdAkjSlhw2l22gHTegDaAhHQJz8lXRw6yV1fZQoaAZHQJKXvGwRoRJoB03oA2gIR0CdDuxVQyh0dX2UKGgGR0CSRPIqbz9TaAdN6ANoCEdAnREzmr8zh3V9lChoBkdAj+1lWOp84WgHTegDaAhHQJ0RQZqEeyR1fZQoaAZHQJMlFRLsa89oB03oA2gIR0CdF1t/4IrwdX2UKGgGR0CWadWOZLIxaAdN6ANoCEdAnS45lJ6IFnV9lChoBkdAktc4cNpdr2gHTegDaAhHQJ0xsK+i8Fp1fZQoaAZHQJUUdjNIK+loB03oA2gIR0CdMclqagEmdX2UKGgGR0CTi1el9BrvaAdN6ANoCEdAnTlPChvitXV9lChoBkdAlQs4H1OCXmgHTegDaAhHQJ1L8BbOeJ51fZQoaAZHQJTmOu/1xsFoB03oA2gIR0CdTjnanJkodX2UKGgGR0CW3y2Xb/OuaAdN6ANoCEdAnU5IvN/vv3V9lChoBkdAlULJu63AmGgHTegDaAhHQJ1UlkRSP2h1fZQoaAZHQJQKRxhlUZNoB03oA2gIR0Cda8AnlXA/dX2UKGgGR0CUzuXbdrO8aAdN6ANoCEdAnW8vuG9HtnV9lChoBkdAlSaSsny/bmgHTegDaAhHQJ1vRZNfw7V1fZQoaAZHQJDvsZxaPjpoB03oA2gIR0CddwN+so2GdX2UKGgGR0CU9aJ7b+LnaAdN6ANoCEdAnYlATh5xBHV9lChoBkdAkKHqAJ9iMGgHTegDaAhHQJ2La2uxKQJ1fZQoaAZHQJLBOyKNyYJoB03oA2gIR0Cdi3jGkvbodX2UKGgGR0CTnmZ2pyZKaAdN6ANoCEdAnZGNHhCMP3V9lChoBkdAjZ3Ztm+TNmgHTegDaAhHQJ2m/iHZbpx1fZQoaAZHQJUQrtjTa0xoB03oA2gIR0Cdqopw0fozdX2UKGgGR0CVTnCmMwUQaAdN6ANoCEdAnaqf9pAUtnV9lChoBkdAlEACZ4Oc2GgHTegDaAhHQJ2zZMEidJ91fZQoaAZHQJD5XirDIiloB03oA2gIR0CdxXmWt2cKdX2UKGgGR0CSxRUmD15CaAdN6ANoCEdAnceikKu0TnV9lChoBkdAj5VFoUSIxmgHTegDaAhHQJ3Hs5FPSD11fZQoaAZHQJPGFx82Ji1oB03oA2gIR0CdzcF7D2rXdX2UKGgGR0CS4YZ/Tb35aAdN6ANoCEdAneJrT6SDAnV9lChoBkdAkHEeUQkHEGgHTegDaAhHQJ3l2BUaQ3h1fZQoaAZHQJKUPm+0w8JoB03oA2gIR0Cd5e7HAAQydX2UKGgGR0CO8vM495hSaAdN6ANoCEdAne926f8Mu3V9lChoBkdAjEDNyxRl6WgHTegDaAhHQJ4CgDNhVlx1fZQoaAZHQJCl70RODapoB03oA2gIR0CeBMAVfu1GdX2UKGgGR0CQ8OCZF5OaaAdN6ANoCEdAngTOI/JNkHV9lChoBkdAjJSYxcmjTWgHTegDaAhHQJ4K+wRoRI11fZQoaAZHQJJPjGYKIBRoB03oA2gIR0CeHxvVmSQpdX2UKGgGR0CUNDtVaOghaAdN6ANoCEdAniJs1Gb1AnV9lChoBkdAlcEYUWVNYmgHTegDaAhHQJ4ihKL876p1fZQoaAZHQJMaJib2Dg9oB03oA2gIR0CeK+1TBInSdX2UKGgGR0CVEL86FM7EaAdN6ANoCEdAnj89JFspHHV9lChoBkdAk8XS6DoQnWgHTegDaAhHQJ5Bfk7wKBx1fZQoaAZHQJFoebNKRMhoB03oA2gIR0CeQYyZa3ZxdX2UKGgGR0CTC6r433pOaAdN6ANoCEdAnker1/Ue+3V9lChoBkdAivlGtyPuHGgHTegDaAhHQJ5btI4EOiF1fZQoaAZHQJbpfHzYmLNoB03oA2gIR0CeXtbRWtEHdX2UKGgGR0CTaN4EwFkhaAdN6ANoCEdAnl7q/M4cWHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30578, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (399 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1099.2270029967417, "std_reward": 137.5334148268976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T14:41:17.124674"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ee59728fb5427c1c26fae16f840d5ad5b946b977a0e21e95b942b073fa523cc
3
+ size 2136