File size: 3,443 Bytes
c7d4ed7
520c689
 
23c9fc6
520c689
 
 
 
 
 
23c9fc6
 
 
 
 
 
6d8702c
 
 
 
 
 
c7d4ed7
 
 
 
 
 
6d8702c
23c9fc6
6d8702c
 
 
 
23c9fc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7d4ed7
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
base_model: timpal0l/BeagleCatMunin2
inference: false
library_name: transformers
merged_models:
- bineric/NorskGPT-Mistral-7b
- timpal0l/BeagleCatMunin
- RJuro/munin-neuralbeagle-7b
pipeline_tag: text-generation
quantized_by: Suparious
tags:
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- merge
- mergekit
- lazymergekit
- bineric/NorskGPT-Mistral-7b
- timpal0l/BeagleCatMunin
- RJuro/munin-neuralbeagle-7b
---
# timpal0l/BeagleCatMunin2 AWQ

- Model creator: [timpal0l](https://huggingface.co/timpal0l)
- Original model: [BeagleCatMunin2](https://huggingface.co/timpal0l/BeagleCatMunin2)

## Model Summary

BeagleCatMunin2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [bineric/NorskGPT-Mistral-7b](https://huggingface.co/bineric/NorskGPT-Mistral-7b)
* [timpal0l/BeagleCatMunin](https://huggingface.co/timpal0l/BeagleCatMunin)
* [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b)

## How to use

### Install the necessary packages

```bash
pip install --upgrade autoawq autoawq-kernels
```

### Example Python code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/BeagleCatMunin2-AWQ"
system_message = "You are BeagleCatMunin2, incarnated as a powerful AI. You were created by timpal0l."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)
```

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code