--- base_model: perlthoughts/Chupacabra-7B-v2.01 license: apache-2.0 model-index: - name: Chupacabra-7B-v2.01 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.86 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.12 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.5 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 59.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01 name: Open LLM Leaderboard tags: - quantized - 4-bit - AWQ - text-generation - autotrain_compatible - endpoints_compatible - chatml pipeline_tag: text-generation inference: false quantized_by: Suparious --- # perlthoughts/Chupacabra-7B-v2.01 AWQ - Model creator: [perlthoughts](https://huggingface.co/perlthoughts) - Original model: [Chupacabra-7B-v2.01](https://huggingface.co/perlthoughts/Chupacabra-7B-v2.01)
## Model Summary Dare-ties merge method. List of all models and merging path is coming soon. ## Purpose Merging the "thick"est model weights from mistral models using amazing training methods like direct preference optimization (dpo) and reinforced learning. I have spent countless hours studying the latest research papers, attending conferences, and networking with experts in the field. I experimented with different algorithms, tactics, fine-tuned hyperparameters, optimizers, and optimized code until i achieved the best possible results. Thank you openchat 3.5 for showing me the way. Here is my contribution. ## Prompt Template Replace {system} with your system prompt, and {prompt} with your prompt instruction. ``` ### System: {system} ### User: {prompt} ### Assistant: ```