Suparious commited on
Commit
3de0088
·
verified ·
1 Parent(s): b54ec60

add model card

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md CHANGED
@@ -1,3 +1,138 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - finetuned
4
+ - quantized
5
+ - 4-bit
6
+ - AWQ
7
+ - transformers
8
+ - pytorch
9
+ - mistral
10
+ - instruct
11
+ - text-generation
12
+ - conversational
13
+ - license:apache-2.0
14
+ - autotrain_compatible
15
+ - endpoints_compatible
16
+ - text-generation-inference
17
+ - finetune
18
+ - chatml
19
+ model-index:
20
+ - name: Gecko-7B-v0.1
21
+ results: []
22
  license: apache-2.0
23
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
24
+ datasets:
25
+ - Intel/orca_dpo_pairs
26
+ language:
27
+ - en
28
+ quantized_by: Suparious
29
+ pipeline_tag: text-generation
30
+ model_creator: NeuralNovel
31
+ model_name: Gecko-7B-0.1
32
+ inference: false
33
+ library_name: transformers
34
+ prompt_template: '<|im_start|>system
35
+
36
+ {system_message}<|im_end|>
37
+
38
+ <|im_start|>user
39
+
40
+ {prompt}<|im_end|>
41
+
42
+ <|im_start|>assistant
43
+
44
+ '
45
  ---
46
+
47
+ # Gecko 7B v0.1 AWQ
48
+
49
+ - Model creator: [NeuralNovel](https://huggingface.co/NeuralNovel)
50
+ - Original model: [Gecko-7B-v0.1](https://huggingface.co/NeuralNovel/Gecko-7B-v0.1)
51
+
52
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/orsrtXfG5xYdx3f20bOOt.jpeg)
53
+
54
+ ## Model Summary
55
+
56
+ Designed to generate instructive and narrative text, with a focus on mathematics & numeracy.
57
+
58
+ Full-parameter fine-tune (FFT) of Mistral-7B-Instruct-v0.2, with apache-2.0 license.
59
+
60
+ You may download and use this model for research, training and commercial purposes.
61
+
62
+ This model is suitable for commercial deployment.
63
+
64
+ The model was finetuned using the Neural-Mini-Math dataset (Currently Private)
65
+
66
+ *Sincere appreciation to Techmind for their generous sponsorship.*
67
+
68
+ ## How to use
69
+
70
+ ### Install the necessary packages
71
+
72
+ ```bash
73
+ pip install --upgrade autoawq autoawq-kernels
74
+ ```
75
+
76
+ ### Example Python code
77
+
78
+ ```python
79
+ from awq import AutoAWQForCausalLM
80
+ from transformers import AutoTokenizer, TextStreamer
81
+
82
+ model_path = "solidrust/Gecko-7B-v0.1-AWQ"
83
+ system_message = "You are Senzu, incarnated as a powerful AI."
84
+
85
+ # Load model
86
+ model = AutoAWQForCausalLM.from_quantized(model_path,
87
+ fuse_layers=True)
88
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
89
+ trust_remote_code=True)
90
+ streamer = TextStreamer(tokenizer,
91
+ skip_prompt=True,
92
+ skip_special_tokens=True)
93
+
94
+ # Convert prompt to tokens
95
+ prompt_template = """\
96
+ <|im_start|>system
97
+ {system_message}<|im_end|>
98
+ <|im_start|>user
99
+ {prompt}<|im_end|>
100
+ <|im_start|>assistant"""
101
+
102
+ prompt = "You're standing on the surface of the Earth. "\
103
+ "You walk one mile south, one mile west and one mile north. "\
104
+ "You end up exactly where you started. Where are you?"
105
+
106
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
107
+ return_tensors='pt').input_ids.cuda()
108
+
109
+ # Generate output
110
+ generation_output = model.generate(tokens,
111
+ streamer=streamer,
112
+ max_new_tokens=512)
113
+
114
+ ```
115
+
116
+ ### About AWQ
117
+
118
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
119
+
120
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
121
+
122
+ It is supported by:
123
+
124
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
125
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
126
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
127
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
128
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
129
+
130
+ ## Prompt template: ChatML
131
+
132
+ ```plaintext
133
+ <|im_start|>system
134
+ {system_message}<|im_end|>
135
+ <|im_start|>user
136
+ {prompt}<|im_end|>
137
+ <|im_start|>assistant
138
+ ```