ParmyJack commited on
Commit
aee73b4
1 Parent(s): 633d34f

Add model card

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md CHANGED
@@ -1,3 +1,115 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - quantized
4
+ - 4-bit
5
+ - AWQ
6
+ - text-generation
7
+ - autotrain_compatible
8
+ - endpoints_compatible
9
+ - chatml
10
+ library_name: transformers
11
  license: apache-2.0
12
+ datasets:
13
+ - Locutusque/hyperion-v2.0
14
+ language:
15
+ - en
16
+ model_creator: Locutusque
17
+ model_name: Darewin-7B
18
+ model_type: mistral
19
+ pipeline_tag: text-generation
20
+ inference: false
21
+ prompt_template: '<|im_start|>system
22
+
23
+ {system_message}<|im_end|>
24
+
25
+ <|im_start|>user
26
+
27
+ {prompt}<|im_end|>
28
+
29
+ <|im_start|>assistant
30
+
31
+ '
32
+ quantized_by: Suparious
33
  ---
34
+ # Locutusque/Hyperion-2.1-Mistral-7B AWQ
35
+
36
+ **UPLOAD IN PROGRESS**
37
+
38
+ - Model creator: [Locutusque](https://huggingface.co/Locutusque)
39
+ - Original model: [Hyperion-2.1-Mistral-7B](https://huggingface.co/Locutusque/Hyperion-2.1-Mistral-7B)
40
+
41
+ ## Model Summary
42
+
43
+ Further fine-tuned Locutusque/Hyperion-2.0-Mistral-7B at a higher learning rate. This was done to see if performance increased. Read Locutusque/Hyperion-2.0-Mistral-7B's model card for more information. Slight performance gain was observed. More checkpoints will be released in the future.
44
+
45
+ ## How to use
46
+
47
+ ### Install the necessary packages
48
+
49
+ ```bash
50
+ pip install --upgrade autoawq autoawq-kernels
51
+ ```
52
+
53
+ ### Example Python code
54
+
55
+ ```python
56
+ from awq import AutoAWQForCausalLM
57
+ from transformers import AutoTokenizer, TextStreamer
58
+
59
+ model_path = "solidrust/Hyperion-2.1-Mistral-7B-AWQ"
60
+ system_message = "You are Hyperion, incarnated as a powerful AI."
61
+
62
+ # Load model
63
+ model = AutoAWQForCausalLM.from_quantized(model_path,
64
+ fuse_layers=True)
65
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
66
+ trust_remote_code=True)
67
+ streamer = TextStreamer(tokenizer,
68
+ skip_prompt=True,
69
+ skip_special_tokens=True)
70
+
71
+ # Convert prompt to tokens
72
+ prompt_template = """\
73
+ <|im_start|>system
74
+ {system_message}<|im_end|>
75
+ <|im_start|>user
76
+ {prompt}<|im_end|>
77
+ <|im_start|>assistant"""
78
+
79
+ prompt = "You're standing on the surface of the Earth. "\
80
+ "You walk one mile south, one mile west and one mile north. "\
81
+ "You end up exactly where you started. Where are you?"
82
+
83
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
84
+ return_tensors='pt').input_ids.cuda()
85
+
86
+ # Generate output
87
+ generation_output = model.generate(tokens,
88
+ streamer=streamer,
89
+ max_new_tokens=512)
90
+
91
+ ```
92
+
93
+ ### About AWQ
94
+
95
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
96
+
97
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
98
+
99
+ It is supported by:
100
+
101
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
102
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
103
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
104
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
105
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
106
+
107
+ ## Prompt template: ChatML
108
+
109
+ ```plaintext
110
+ <|im_start|>system
111
+ {system_message}<|im_end|>
112
+ <|im_start|>user
113
+ {prompt}<|im_end|>
114
+ <|im_start|>assistant
115
+ ```