Suparious commited on
Commit
0ef5252
1 Parent(s): 768651d

add model card

Browse files
Files changed (1) hide show
  1. README.md +222 -1
README.md CHANGED
@@ -1,3 +1,224 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc
3
+ tags:
4
+ - mergekit
5
+ - merge
6
+ - quantized
7
+ - 4-bit
8
+ - AWQ
9
+ - pytorch
10
+ - mistral
11
+ - instruct
12
+ - text-generation
13
+ - license:apache-2.0
14
+ - autotrain_compatible
15
+ - endpoints_compatible
16
+ - text-generation-inference
17
+ library_name: transformers
18
+ datasets:
19
+ - jondurbin/truthy-dpo-v0.1
20
+ model-index:
21
+ - name: MBX-7B-v3-DPO
22
+ results:
23
+ - task:
24
+ type: text-generation
25
+ name: Text Generation
26
+ dataset:
27
+ name: AI2 Reasoning Challenge (25-Shot)
28
+ type: ai2_arc
29
+ config: ARC-Challenge
30
+ split: test
31
+ args:
32
+ num_few_shot: 25
33
+ metrics:
34
+ - type: acc_norm
35
+ value: 73.55
36
+ name: normalized accuracy
37
+ source:
38
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
39
+ name: Open LLM Leaderboard
40
+ - task:
41
+ type: text-generation
42
+ name: Text Generation
43
+ dataset:
44
+ name: HellaSwag (10-Shot)
45
+ type: hellaswag
46
+ split: validation
47
+ args:
48
+ num_few_shot: 10
49
+ metrics:
50
+ - type: acc_norm
51
+ value: 89.11
52
+ name: normalized accuracy
53
+ source:
54
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
55
+ name: Open LLM Leaderboard
56
+ - task:
57
+ type: text-generation
58
+ name: Text Generation
59
+ dataset:
60
+ name: MMLU (5-Shot)
61
+ type: cais/mmlu
62
+ config: all
63
+ split: test
64
+ args:
65
+ num_few_shot: 5
66
+ metrics:
67
+ - type: acc
68
+ value: 64.91
69
+ name: accuracy
70
+ source:
71
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
72
+ name: Open LLM Leaderboard
73
+ - task:
74
+ type: text-generation
75
+ name: Text Generation
76
+ dataset:
77
+ name: TruthfulQA (0-shot)
78
+ type: truthful_qa
79
+ config: multiple_choice
80
+ split: validation
81
+ args:
82
+ num_few_shot: 0
83
+ metrics:
84
+ - type: mc2
85
+ value: 74.0
86
+ source:
87
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
88
+ name: Open LLM Leaderboard
89
+ - task:
90
+ type: text-generation
91
+ name: Text Generation
92
+ dataset:
93
+ name: Winogrande (5-shot)
94
+ type: winogrande
95
+ config: winogrande_xl
96
+ split: validation
97
+ args:
98
+ num_few_shot: 5
99
+ metrics:
100
+ - type: acc
101
+ value: 85.56
102
+ name: accuracy
103
+ source:
104
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
105
+ name: Open LLM Leaderboard
106
+ - task:
107
+ type: text-generation
108
+ name: Text Generation
109
+ dataset:
110
+ name: GSM8k (5-shot)
111
+ type: gsm8k
112
+ config: main
113
+ split: test
114
+ args:
115
+ num_few_shot: 5
116
+ metrics:
117
+ - type: acc
118
+ value: 69.67
119
+ name: accuracy
120
+ source:
121
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
122
+ name: Open LLM Leaderboard
123
+ language:
124
+ - en
125
+ model_creator: macadeliccc
126
+ model_name: MBX-7B-v3-DPO
127
+ model_type: mistral
128
+ pipeline_tag: text-generation
129
+ inference: false
130
+ prompt_template: '<|im_start|>system
131
+
132
+ {system_message}<|im_end|>
133
+
134
+ <|im_start|>user
135
+
136
+ {prompt}<|im_end|>
137
+
138
+ <|im_start|>assistant
139
+
140
+ '
141
+ quantized_by: Suparious
142
  ---
143
+ # macadeliccc/MBX-7B-v3-DPO AWQ
144
+
145
+ - Model creator: [macadeliccc](https://huggingface.co/macadeliccc)
146
+ - Original model: [MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO)
147
+
148
+ ![MBX-v3-orca](MBX-v3-orca.png)
149
+
150
+ ## Model Summary
151
+
152
+ This model is a finetune of [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) using jondurbin/truthy-dpo-v0.1
153
+
154
+ ## How to use
155
+
156
+ ### Install the necessary packages
157
+
158
+ ```bash
159
+ pip install --upgrade autoawq autoawq-kernels
160
+ ```
161
+
162
+ ### Example Python code
163
+
164
+ ```python
165
+ from awq import AutoAWQForCausalLM
166
+ from transformers import AutoTokenizer, TextStreamer
167
+
168
+ model_path = "solidrust/MBX-7B-v3-DPO-AWQ"
169
+ system_message = "You are Newton, incarnated as a powerful AI."
170
+
171
+ # Load model
172
+ model = AutoAWQForCausalLM.from_quantized(model_path,
173
+ fuse_layers=True)
174
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
175
+ trust_remote_code=True)
176
+ streamer = TextStreamer(tokenizer,
177
+ skip_prompt=True,
178
+ skip_special_tokens=True)
179
+
180
+ # Convert prompt to tokens
181
+ prompt_template = """\
182
+ <|im_start|>system
183
+ {system_message}<|im_end|>
184
+ <|im_start|>user
185
+ {prompt}<|im_end|>
186
+ <|im_start|>assistant"""
187
+
188
+ prompt = "You're standing on the surface of the Earth. "\
189
+ "You walk one mile south, one mile west and one mile north. "\
190
+ "You end up exactly where you started. Where are you?"
191
+
192
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
193
+ return_tensors='pt').input_ids.cuda()
194
+
195
+ # Generate output
196
+ generation_output = model.generate(tokens,
197
+ streamer=streamer,
198
+ max_new_tokens=512)
199
+
200
+ ```
201
+
202
+ ### About AWQ
203
+
204
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
205
+
206
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
207
+
208
+ It is supported by:
209
+
210
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
211
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
212
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
213
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
214
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
215
+
216
+ ## Prompt template: ChatML
217
+
218
+ ```plaintext
219
+ <|im_start|>system
220
+ {system_message}<|im_end|>
221
+ <|im_start|>user
222
+ {prompt}<|im_end|>
223
+ <|im_start|>assistant
224
+ ```