--- base_model: Locutusque/OpenCerebrum-1.0-7b-DPO language: - en license: apache-2.0 tags: - open-source - code - math - chemistry - biology - transformers - mistral - text-generation-inference - question-answering - quantized - 4-bit - AWQ - text-generation - autotrain_compatible - endpoints_compatible - chatml datasets: - Locutusque/OpenCerebrum-dpo model_creator: Locutusque model_name: OpenCerebrum-1.0-7b-DPO model_type: mistral pipeline_tag: text-generation inference: false prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: Suparious --- # Locutusque/OpenCerebrum-1.0-7b-DPO AWQ - Model creator: [Locutusque](https://huggingface.co/Locutusque) - Original model: [OpenCerebrum-1.0-7b-DPO](https://huggingface.co/Locutusque/OpenCerebrum-1.0-7b-DPO) ## Model Summary OpenCerebrum-1.0-7B-DPO is an open-source language model fine-tuned from the alpindale/Mistral-7B-v0.2-hf base model on a diverse dataset aimed at replicating capabilities of Aether Research's proprietary Cerebrum model. The model was fine-tuned on approximately 21,000 examples across 6 datasets spanning coding, math, science, reasoning, and general instruction-following. The goal was to assemble public datasets that could help the model achieve strong performance on benchmarks where Cerebrum excels. I used the ChatML prompt format to train this model. - **Base Model:** alpindale/Mistral-7B-v0.2-hf - **Parameters:** 7 billion - **Fine-Tuning Dataset Size:** ~21,000 examples - **Fine-Tuning Data:** Amalgamation of 6 public datasets - **Language:** English - **License:** Apache 2.0 ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/OpenCerebrum-1.0-7b-DPO-AWQ" system_message = "You are Cerebrum, incarnated as a powerful AI." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Prompt template: ChatML ```plaintext <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ```