--- base_model: jeiku/Soulful_Bepis_9B datasets: - ChaoticNeutrals/Synthetic_Soul_1k inference: false language: - en library_name: transformers license: other merged_models: - ChaoticNeutrals/Bepis_9B - jeiku/Synthetic_Soul_1k_Mistral_128 pipeline_tag: text-generation quantized_by: Suparious tags: - 4-bit - AWQ - text-generation - autotrain_compatible - endpoints_compatible - mergekit - merge --- # jeiku/Soulful_Bepis_9B AWQ - Model creator: [jeiku](https://huggingface.co/jeiku) - Original model: [Soulful_Bepis_9B](https://huggingface.co/jeiku/Soulful_Bepis_9B) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/x3qrhs8GG8nBfVSdlp0yB.jpeg) ## Model SUmmary Bepis_9B finetuned on Synthetic_Soul_1k. Does it do anything? Who knows... ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/Soulful_Bepis_9B-AWQ" system_message = "You are Soulful_Bepis_9B, incarnated as a powerful AI. You were created by jeiku." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code