Suparious commited on
Commit
3440e5e
·
verified ·
1 Parent(s): 1dd241c

Add a model card

Browse files
Files changed (1) hide show
  1. README.md +151 -0
README.md CHANGED
@@ -1,3 +1,154 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - finetuned
4
+ - quantized
5
+ - 4-bit
6
+ - AWQ
7
+ - transformers
8
+ - pytorch
9
+ - mistral
10
+ - instruct
11
+ - text-generation
12
+ - conversational
13
+ - license:apache-2.0
14
+ - autotrain_compatible
15
+ - endpoints_compatible
16
+ - text-generation-inference
17
+ - finetune
18
+ - chatml
19
+ - generated_from_trainer
20
+ model-index:
21
+ - name: Senzu-7B-v0.1
22
+ results: []
23
  license: apache-2.0
24
+ base_model: mistralai/Mistral-7B-v0.1
25
+ datasets:
26
+ - Intel/orca_dpo_pairs
27
+ - NeuralNovel/Neural-Story-v1
28
+ language:
29
+ - en
30
+ quantized_by: Suparious
31
+ pipeline_tag: text-generation
32
+ model_creator: NeuralNovel
33
+ model_name: Tiger 7B 0.1
34
+ inference: false
35
+ prompt_template: '<|im_start|>system
36
+
37
+ {system_message}<|im_end|>
38
+
39
+ <|im_start|>user
40
+
41
+ {prompt}<|im_end|>
42
+
43
+ <|im_start|>assistant
44
+
45
+ '
46
  ---
47
+
48
+ # Tiger 7B v0.1 AWQ
49
+
50
+ - Model creator: [NeuralNovel](https://huggingface.co/NeuralNovel)
51
+ - Original model: [Tiger-7B-v0.1](https://huggingface.co/NeuralNovel/Tiger-7B-v0.1)
52
+
53
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/Z58bB5sYr3pyE2Ilbk7Dk.png)
54
+
55
+ ## Model Details
56
+
57
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
58
+
59
+ The following models were included in the merge:
60
+ * [NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story](https://huggingface.co/NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story)
61
+ * [NeuralNovel/Gecko-7B-v0.1-DPO](https://huggingface.co/NeuralNovel/Gecko-7B-v0.1-DPO)
62
+
63
+ The following YAML configuration was used to produce this model:
64
+
65
+ ```yaml
66
+
67
+ slices:
68
+ - sources:
69
+ - model: NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story
70
+ layer_range: [0, 32]
71
+ - model: NeuralNovel/Gecko-7B-v0.1-DPO
72
+ layer_range: [0, 32]
73
+ merge_method: slerp
74
+ base_model: NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story
75
+ parameters:
76
+ t:
77
+ - filter: self_attn
78
+ value: [0, 0.5, 0.3, 0.7, 1]
79
+ - filter: mlp
80
+ value: [1, 0.5, 0.7, 0.3, 0]
81
+ - value: 0.5
82
+ dtype: bfloat16
83
+
84
+ ## How to use
85
+
86
+ ### Install the necessary packages
87
+
88
+ ```bash
89
+ pip install --upgrade autoawq autoawq-kernels
90
+ ```
91
+
92
+ ### Example Python code
93
+
94
+ ```python
95
+ from awq import AutoAWQForCausalLM
96
+ from transformers import AutoTokenizer, TextStreamer
97
+
98
+ model_path = "solidrust/Tiger-7B-v0.1-DPO-AWQ"
99
+ system_message = "You are Tiger, incarnated as a powerful AI."
100
+
101
+ # Load model
102
+ model = AutoAWQForCausalLM.from_quantized(model_path,
103
+ fuse_layers=True)
104
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
105
+ trust_remote_code=True)
106
+ streamer = TextStreamer(tokenizer,
107
+ skip_prompt=True,
108
+ skip_special_tokens=True)
109
+
110
+ # Convert prompt to tokens
111
+ prompt_template = """\
112
+ <|im_start|>system
113
+ {system_message}<|im_end|>
114
+ <|im_start|>user
115
+ {prompt}<|im_end|>
116
+ <|im_start|>assistant"""
117
+
118
+ prompt = "You're standing on the surface of the Earth. "\
119
+ "You walk one mile south, one mile west and one mile north. "\
120
+ "You end up exactly where you started. Where are you?"
121
+
122
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
123
+ return_tensors='pt').input_ids.cuda()
124
+
125
+ # Generate output
126
+ generation_output = model.generate(tokens,
127
+ streamer=streamer,
128
+ max_new_tokens=512)
129
+
130
+ ```
131
+
132
+ ### About AWQ
133
+
134
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
135
+
136
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
137
+
138
+ It is supported by:
139
+
140
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
141
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
142
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
143
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
144
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
145
+
146
+ ## Prompt template: ChatML
147
+
148
+ ```plaintext
149
+ <|im_start|>system
150
+ {system_message}<|im_end|>
151
+ <|im_start|>user
152
+ {prompt}<|im_end|>
153
+ <|im_start|>assistant
154
+ ```