File size: 6,665 Bytes
a4a51bb
 
 
 
 
 
55c0c82
 
 
 
9fc8cc9
 
 
 
 
 
a4a51bb
 
 
e24e58a
 
a4a51bb
 
 
 
b0a247d
 
 
738357c
a4a51bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24e58a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b7c07
 
e24e58a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a51bb
 
 
55c0c82
a4a51bb
 
 
e24e58a
 
 
 
 
 
 
 
a4a51bb
 
 
 
 
 
 
 
 
 
 
 
fe235fe
 
 
 
 
 
 
 
 
 
 
 
 
a4a51bb
 
 
e24e58a
 
a4a51bb
 
 
 
 
 
 
 
 
 
 
 
 
 
e24e58a
a4a51bb
 
 
 
 
 
 
 
 
e24e58a
a4a51bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc8cc9
 
 
 
 
a4a51bb
9fc8cc9
a4a51bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- es
dataset:
- hackathon-pln-es/ESnli
widget:
- text: "A ver si nos tenemos que poner todos en huelga hasta cobrar lo que queramos."
- text: "La huelga es el método de lucha más eficaz para conseguir mejoras en el salario."
- text: "Tendremos que optar por hacer una huelga para cobrar lo que queremos."
- text: "Queda descartada la huelga aunque no cobremos lo que queramos."
---

# bertin-roberta-base-finetuning-esnli

This is a [sentence-transformers](https://www.SBERT.net) model trained on a
collection of NLI tasks for Spanish. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Based around the siamese networks approach from [this paper](https://arxiv.org/pdf/1908.10084.pdf).
<!--- Describe your model here -->

You can see a demo for this model [here](https://huggingface.co/spaces/hackathon-pln-es/Sentence-Embedding-Bertin).

You can find our other model, **paraphrase-spanish-distilroberta** [here](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) and its demo [here](https://huggingface.co/spaces/hackathon-pln-es/Paraphrase-Bertin).

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Este es un ejemplo", "Cada oración es transformada"]

model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
embeddings = model.encode(sentences)
print(embeddings)
```

## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```


## Evaluation Results

<!--- Describe how your model was evaluated -->
Our model was evaluated on the task of Semantic Textual Similarity using the [SemEval-2015 Task](https://alt.qcri.org/semeval2015/task2/) for [Spanish](http://alt.qcri.org/semeval2015/task2/data/uploads/sts2015-es-test.zip). We measure 

|                    | [BETO STS](https://huggingface.co/espejelomar/sentece-embeddings-BETO) | BERTIN STS (this model) | Relative improvement |
|-------------------:|---------:|-----------:|---------------------:|
|   cosine_pearson   | 0.609803 | 0.683188   | +12.03               |
|   cosine_spearman  | 0.528776 | 0.615916   | +16.48               |
|  euclidean_pearson | 0.590613 | 0.672601   | +13.88               |
| euclidean_spearman | 0.526529 | 0.611539   | +16.15               |
|  manhattan_pearson | 0.589108 | 0.672040   | +14.08               |
| manhattan_spearman | 0.525910 | 0.610517   | +16.09               |
|     dot_pearson    | 0.544078 | 0.600517   | +10.37               |
|    dot_spearman    | 0.460427 | 0.521260   | +13.21               |


## Training
The model was trained with the parameters:

**Dataset**

We used a collection of datasets of Natural Language Inference as training data:
 - [ESXNLI](https://raw.githubusercontent.com/artetxem/esxnli/master/esxnli.tsv), only the part in spanish
 - [SNLI](https://nlp.stanford.edu/projects/snli/), automatically translated
 - [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/), automatically translated

The whole dataset used is available [here](https://huggingface.co/datasets/hackathon-pln-es/nli-es).

Here we leave the trick we used to increase the amount of data for training here:
```
  for row in reader:
    if row['language'] == 'es':
      
      sent1 = row['sentence1'].strip()
      sent2 = row['sentence2'].strip()
    
      add_to_samples(sent1, sent2, row['gold_label'])
      add_to_samples(sent2, sent1, row['gold_label'])  #Also add the opposite
```

**DataLoader**:

`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader`
of length 1818 with parameters:
```
{'batch_size': 64}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 909,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Authors

[Anibal Pérez](https://huggingface.co/Anarpego),

[Emilio Tomás Ariza](https://huggingface.co/medardodt),

[Lautaro Gesuelli](https://huggingface.co/Lgesuelli) y

[Mauricio Mazuecos](https://huggingface.co/mmazuecos).