File size: 6,667 Bytes
a4a51bb 55c0c82 22cc774 9fc8cc9 a4a51bb e24e58a a4a51bb b0a247d 738357c a4a51bb e24e58a 38b7c07 e24e58a a4a51bb 55c0c82 a4a51bb e24e58a a4a51bb fe235fe a4a51bb e24e58a a4a51bb e24e58a a4a51bb e24e58a a4a51bb 9fc8cc9 a4a51bb 9fc8cc9 a4a51bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- es
datasets:
- hackathon-pln-es/nli-es
widget:
- text: "A ver si nos tenemos que poner todos en huelga hasta cobrar lo que queramos."
- text: "La huelga es el método de lucha más eficaz para conseguir mejoras en el salario."
- text: "Tendremos que optar por hacer una huelga para cobrar lo que queremos."
- text: "Queda descartada la huelga aunque no cobremos lo que queramos."
---
# bertin-roberta-base-finetuning-esnli
This is a [sentence-transformers](https://www.SBERT.net) model trained on a
collection of NLI tasks for Spanish. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Based around the siamese networks approach from [this paper](https://arxiv.org/pdf/1908.10084.pdf).
<!--- Describe your model here -->
You can see a demo for this model [here](https://huggingface.co/spaces/hackathon-pln-es/Sentence-Embedding-Bertin).
You can find our other model, **paraphrase-spanish-distilroberta** [here](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) and its demo [here](https://huggingface.co/spaces/hackathon-pln-es/Paraphrase-Bertin).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Este es un ejemplo", "Cada oración es transformada"]
model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
Our model was evaluated on the task of Semantic Textual Similarity using the [SemEval-2015 Task](https://alt.qcri.org/semeval2015/task2/) for [Spanish](http://alt.qcri.org/semeval2015/task2/data/uploads/sts2015-es-test.zip). We measure
| | [BETO STS](https://huggingface.co/espejelomar/sentece-embeddings-BETO) | BERTIN STS (this model) | Relative improvement |
|-------------------:|---------:|-----------:|---------------------:|
| cosine_pearson | 0.609803 | 0.683188 | +12.03 |
| cosine_spearman | 0.528776 | 0.615916 | +16.48 |
| euclidean_pearson | 0.590613 | 0.672601 | +13.88 |
| euclidean_spearman | 0.526529 | 0.611539 | +16.15 |
| manhattan_pearson | 0.589108 | 0.672040 | +14.08 |
| manhattan_spearman | 0.525910 | 0.610517 | +16.09 |
| dot_pearson | 0.544078 | 0.600517 | +10.37 |
| dot_spearman | 0.460427 | 0.521260 | +13.21 |
## Training
The model was trained with the parameters:
**Dataset**
We used a collection of datasets of Natural Language Inference as training data:
- [ESXNLI](https://raw.githubusercontent.com/artetxem/esxnli/master/esxnli.tsv), only the part in spanish
- [SNLI](https://nlp.stanford.edu/projects/snli/), automatically translated
- [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/), automatically translated
The whole dataset used is available [here](https://huggingface.co/datasets/hackathon-pln-es/nli-es).
Here we leave the trick we used to increase the amount of data for training here:
```
for row in reader:
if row['language'] == 'es':
sent1 = row['sentence1'].strip()
sent2 = row['sentence2'].strip()
add_to_samples(sent1, sent2, row['gold_label'])
add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite
```
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader`
of length 1818 with parameters:
```
{'batch_size': 64}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 909,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Authors
[Anibal Pérez](https://huggingface.co/Anarpego),
[Emilio Tomás Ariza](https://huggingface.co/medardodt),
[Lautaro Gesuelli](https://huggingface.co/Lgesuelli) y
[Mauricio Mazuecos](https://huggingface.co/mmazuecos).
|