--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: - es dataset: - hackathon-pln-es/ESnli widget: - text: "A ver si nos tenemos que poner todos en huelga hasta cobrar lo que queramos." - text: "La huelga es el método de lucha más eficaz para conseguir mejoras en el salario." - text: "Tendremos que optar por hacer una huelga para cobrar lo que queremos." - text: "Queda descartada la huelga aunque no cobremos lo que queramos." --- # bertin-roberta-base-finetuning-esnli This is a [sentence-transformers](https://www.SBERT.net) model trained on a collection of NLI tasks for Spanish. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Based around the siamese networks approach from [this paper](https://arxiv.org/pdf/1908.10084.pdf). You can see a demo for this model [here](https://huggingface.co/spaces/hackathon-pln-es/Sentence-Embedding-Bertin). You can find our other model, **paraphrase-spanish-distilroberta** [here](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) and its demo [here](https://huggingface.co/spaces/hackathon-pln-es/Paraphrase-Bertin). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Este es un ejemplo", "Cada oración es transformada"] model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results Our model was evaluated on the task of Semantic Textual Similarity using the [SemEval-2015 Task](https://alt.qcri.org/semeval2015/task2/) for [Spanish](http://alt.qcri.org/semeval2015/task2/data/uploads/sts2015-es-test.zip). We measure | | [BETO STS](https://huggingface.co/espejelomar/sentece-embeddings-BETO) | BERTIN STS (this model) | Relative improvement | |-------------------:|---------:|-----------:|---------------------:| | cosine_pearson | 0.609803 | 0.683188 | +12.03 | | cosine_spearman | 0.528776 | 0.615916 | +16.48 | | euclidean_pearson | 0.590613 | 0.672601 | +13.88 | | euclidean_spearman | 0.526529 | 0.611539 | +16.15 | | manhattan_pearson | 0.589108 | 0.672040 | +14.08 | | manhattan_spearman | 0.525910 | 0.610517 | +16.09 | | dot_pearson | 0.544078 | 0.600517 | +10.37 | | dot_spearman | 0.460427 | 0.521260 | +13.21 | ## Training The model was trained with the parameters: **Dataset** We used a collection of datasets of Natural Language Inference as training data: - [ESXNLI](https://raw.githubusercontent.com/artetxem/esxnli/master/esxnli.tsv), only the part in spanish - [SNLI](https://nlp.stanford.edu/projects/snli/), automatically translated - [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/), automatically translated The whole dataset used is available [here](https://huggingface.co/datasets/hackathon-pln-es/nli-es). Here we leave the trick we used to increase the amount of data for training here: ``` for row in reader: if row['language'] == 'es': sent1 = row['sentence1'].strip() sent2 = row['sentence2'].strip() add_to_samples(sent1, sent2, row['gold_label']) add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite ``` **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 1818 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 909, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Authors [Anibal Pérez](https://huggingface.co/Anarpego), [Emilio Tomás Ariza](https://huggingface.co/medardodt), [Lautaro Gesuelli](https://huggingface.co/Lgesuelli) y [Mauricio Mazuecos](https://huggingface.co/mmazuecos).