File size: 8,963 Bytes
e45a091
 
 
 
 
 
 
bbdbb1b
e45a091
 
 
 
 
 
 
 
b5d2ccc
e45a091
 
 
 
 
 
ec33c81
e45a091
ec33c81
e45a091
ec33c81
e45a091
ec33c81
 
 
 
 
e45a091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-sentiment-mesd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-sentiment-mesd-v11

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [MESD](https://huggingface.co/datasets/hackathon-pln-es/MESD) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3071
- Accuracy: 0.9308

## Model description

This model was trained to classify underlying sentiment of Spanish audio/speech.

## Intended uses

- Presenting, recommending and categorizing the audio libraries or other media in general based on detected mood/preferences via user's speech or user's aural environment. A mood lighting system, in addition to the aforementioned features, can be implemented to make user's environment a bit more user-friendly, and and so contribute a little to maintaining the user's mental health and overall welfare.  [Goal 3- SDG]

- Additionally, the model can be trained on data with more class labels in order to be useful particularly in detecting brawls, and any other uneventful scenario. An audio classifier can be integrated in a surveillance system to detect brawls and other unsettling events that can be recognized using "sound." [Goal 16 -SDG]

## Limitations

-The open-source MESD dataset was used to fine-tune the Wav2Vec2 base model, which contains ~1200 audio recordings, all of which were recorded in professional studios and were only one second long. Out of ~1200 audio recordings only 890 of the recordings were utilized for training. Due to these factors, the model and hence this Gradio application may not be able to perform well in noisy environments or audio with background music or noise. It's also worth mentioning that this model performs poorly when it comes to audio recordings from the class "Fear," which the model often misclassifies.


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.86  | 3    | 1.7516          | 0.3846   |
| 1.9428        | 1.86  | 6    | 1.6859          | 0.4308   |
| 1.9428        | 2.86  | 9    | 1.5575          | 0.4692   |
| 1.9629        | 3.86  | 12   | 1.4160          | 0.4846   |
| 1.5678        | 4.86  | 15   | 1.2979          | 0.5308   |
| 1.5678        | 5.86  | 18   | 1.2294          | 0.5308   |
| 1.4728        | 6.86  | 21   | 1.0703          | 0.5923   |
| 1.4728        | 7.86  | 24   | 0.9926          | 0.6308   |
| 1.2588        | 8.86  | 27   | 0.9202          | 0.6846   |
| 0.991         | 9.86  | 30   | 0.8537          | 0.6846   |
| 0.991         | 10.86 | 33   | 0.8816          | 0.6769   |
| 0.9059        | 11.86 | 36   | 0.7149          | 0.7769   |
| 0.9059        | 12.86 | 39   | 0.7676          | 0.7462   |
| 0.7901        | 13.86 | 42   | 0.6971          | 0.7538   |
| 0.6278        | 14.86 | 45   | 0.6671          | 0.7923   |
| 0.6278        | 15.86 | 48   | 0.5681          | 0.8231   |
| 0.5678        | 16.86 | 51   | 0.5535          | 0.8154   |
| 0.5678        | 17.86 | 54   | 0.5947          | 0.8077   |
| 0.5157        | 18.86 | 57   | 0.6396          | 0.7692   |
| 0.4189        | 19.86 | 60   | 0.5291          | 0.8077   |
| 0.4189        | 20.86 | 63   | 0.4600          | 0.8538   |
| 0.3885        | 21.86 | 66   | 0.5188          | 0.8308   |
| 0.3885        | 22.86 | 69   | 0.5959          | 0.7923   |
| 0.3255        | 23.86 | 72   | 0.5240          | 0.8462   |
| 0.2711        | 24.86 | 75   | 0.5105          | 0.8385   |
| 0.2711        | 25.86 | 78   | 0.5177          | 0.8231   |
| 0.2748        | 26.86 | 81   | 0.3302          | 0.8923   |
| 0.2748        | 27.86 | 84   | 0.4774          | 0.8538   |
| 0.2379        | 28.86 | 87   | 0.4204          | 0.8769   |
| 0.1982        | 29.86 | 90   | 0.6540          | 0.7692   |
| 0.1982        | 30.86 | 93   | 0.5664          | 0.8308   |
| 0.2171        | 31.86 | 96   | 0.5100          | 0.8462   |
| 0.2171        | 32.86 | 99   | 0.3924          | 0.8769   |
| 0.17          | 33.86 | 102  | 0.6002          | 0.8231   |
| 0.1761        | 34.86 | 105  | 0.4364          | 0.8538   |
| 0.1761        | 35.86 | 108  | 0.4166          | 0.8692   |
| 0.1703        | 36.86 | 111  | 0.4374          | 0.8692   |
| 0.1703        | 37.86 | 114  | 0.3872          | 0.8615   |
| 0.1569        | 38.86 | 117  | 0.3941          | 0.8538   |
| 0.1149        | 39.86 | 120  | 0.4004          | 0.8538   |
| 0.1149        | 40.86 | 123  | 0.4360          | 0.8385   |
| 0.1087        | 41.86 | 126  | 0.4387          | 0.8615   |
| 0.1087        | 42.86 | 129  | 0.4352          | 0.8692   |
| 0.1039        | 43.86 | 132  | 0.4018          | 0.8846   |
| 0.099         | 44.86 | 135  | 0.4019          | 0.8846   |
| 0.099         | 45.86 | 138  | 0.4083          | 0.8923   |
| 0.1043        | 46.86 | 141  | 0.4594          | 0.8692   |
| 0.1043        | 47.86 | 144  | 0.4478          | 0.8769   |
| 0.0909        | 48.86 | 147  | 0.5025          | 0.8538   |
| 0.1024        | 49.86 | 150  | 0.5442          | 0.8692   |
| 0.1024        | 50.86 | 153  | 0.3827          | 0.8769   |
| 0.1457        | 51.86 | 156  | 0.6816          | 0.8231   |
| 0.1457        | 52.86 | 159  | 0.3435          | 0.8923   |
| 0.1233        | 53.86 | 162  | 0.4418          | 0.8769   |
| 0.101         | 54.86 | 165  | 0.4629          | 0.8846   |
| 0.101         | 55.86 | 168  | 0.4616          | 0.8692   |
| 0.0969        | 56.86 | 171  | 0.3608          | 0.8923   |
| 0.0969        | 57.86 | 174  | 0.4867          | 0.8615   |
| 0.0981        | 58.86 | 177  | 0.4493          | 0.8692   |
| 0.0642        | 59.86 | 180  | 0.3841          | 0.8538   |
| 0.0642        | 60.86 | 183  | 0.4509          | 0.8769   |
| 0.0824        | 61.86 | 186  | 0.4477          | 0.8769   |
| 0.0824        | 62.86 | 189  | 0.4649          | 0.8615   |
| 0.0675        | 63.86 | 192  | 0.3492          | 0.9231   |
| 0.0839        | 64.86 | 195  | 0.3763          | 0.8846   |
| 0.0839        | 65.86 | 198  | 0.4475          | 0.8769   |
| 0.0677        | 66.86 | 201  | 0.4104          | 0.8923   |
| 0.0677        | 67.86 | 204  | 0.3071          | 0.9308   |
| 0.0626        | 68.86 | 207  | 0.3598          | 0.9077   |
| 0.0412        | 69.86 | 210  | 0.3771          | 0.8923   |
| 0.0412        | 70.86 | 213  | 0.4043          | 0.8846   |
| 0.0562        | 71.86 | 216  | 0.3696          | 0.9077   |
| 0.0562        | 72.86 | 219  | 0.3295          | 0.9077   |
| 0.0447        | 73.86 | 222  | 0.3616          | 0.8923   |
| 0.0727        | 74.86 | 225  | 0.3495          | 0.8923   |
| 0.0727        | 75.86 | 228  | 0.4330          | 0.8846   |
| 0.0576        | 76.86 | 231  | 0.5179          | 0.8923   |
| 0.0576        | 77.86 | 234  | 0.5544          | 0.8846   |
| 0.0489        | 78.86 | 237  | 0.4630          | 0.9      |
| 0.0472        | 79.86 | 240  | 0.4513          | 0.9      |
| 0.0472        | 80.86 | 243  | 0.4207          | 0.9077   |
| 0.0386        | 81.86 | 246  | 0.4118          | 0.8769   |
| 0.0386        | 82.86 | 249  | 0.4764          | 0.8769   |
| 0.0372        | 83.86 | 252  | 0.4167          | 0.8769   |
| 0.0344        | 84.86 | 255  | 0.3744          | 0.9077   |
| 0.0344        | 85.86 | 258  | 0.3712          | 0.9077   |
| 0.0459        | 86.86 | 261  | 0.4249          | 0.8846   |
| 0.0459        | 87.86 | 264  | 0.4687          | 0.8846   |
| 0.0364        | 88.86 | 267  | 0.4194          | 0.8923   |
| 0.0283        | 89.86 | 270  | 0.3963          | 0.8923   |
| 0.0283        | 90.86 | 273  | 0.3982          | 0.8923   |
| 0.0278        | 91.86 | 276  | 0.3838          | 0.9077   |
| 0.0278        | 92.86 | 279  | 0.3731          | 0.9      |
| 0.0352        | 93.86 | 282  | 0.3736          | 0.9      |
| 0.0297        | 94.86 | 285  | 0.3702          | 0.9      |
| 0.0297        | 95.86 | 288  | 0.3521          | 0.9154   |
| 0.0245        | 96.86 | 291  | 0.3522          | 0.9154   |
| 0.0245        | 97.86 | 294  | 0.3600          | 0.9077   |
| 0.0241        | 98.86 | 297  | 0.3636          | 0.9077   |
| 0.0284        | 99.86 | 300  | 0.3639          | 0.9077   |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6