songhieng commited on
Commit
e15f05e
Β·
verified Β·
1 Parent(s): 6175b0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -154
README.md CHANGED
@@ -1,199 +1,145 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
132
 
 
 
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
 
 
 
 
138
 
139
- [More Information Needed]
 
 
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
 
 
 
 
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+ # Khmer mT5 Summarization Model (1024 Tokens)
 
 
 
 
 
 
 
2
 
3
+ ## Introduction
4
 
5
+ This repository contains a fine-tuned mT5 model for Khmer text summarization, extending the capabilities of the original [khmer-mt5-summarization](https://huggingface.co/songhieng/khmer-mt5-summarization) model. The primary enhancement in this version is the support for summarizing longer texts, with training adjusted to accommodate inputs up to 1024 tokens.
6
 
7
  ## Model Details
8
 
9
+ - **Base Model:** `google/mt5-small`
10
+ - **Fine-tuned for:** Khmer text summarization with extended input length
11
+ - **Training Dataset:** `kimleang123/khmer-text-dataset`
12
+ - **Framework:** Hugging Face `transformers`
13
+ - **Task Type:** Sequence-to-Sequence (Seq2Seq)
14
+ - **Input:** Khmer text (articles, paragraphs, or documents) up to 1024 tokens
15
+ - **Output:** Summarized Khmer text
16
+ - **Training Hardware:** GPU (Tesla T4)
17
+ - **Evaluation Metric:** ROUGE Score
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ ## Installation & Setup
20
 
21
+ ### 1️⃣ Install Dependencies
22
 
23
+ Ensure you have `transformers`, `torch`, and `datasets` installed:
24
 
25
+ ```bash
26
+ pip install transformers torch datasets
27
+ ```
28
 
29
+ ### 2️⃣ Load the Model
30
 
31
+ To load and use the fine-tuned model:
32
 
33
+ ```python
34
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
35
 
36
+ model_name = "songhieng/khmer-mt5-summarization-1024tk"
37
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
38
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
39
+ ```
40
 
41
+ ## How to Use
42
 
43
+ ### 1️⃣ Using Python Code
44
 
45
+ ```python
46
+ def summarize_khmer(text, max_length=150):
47
+ input_text = f"summarize: {text}"
48
+ inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
49
+ summary_ids = model.generate(**inputs, max_length=max_length, num_beams=5, length_penalty=2.0, early_stopping=True)
50
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
51
+ return summary
52
 
53
+ khmer_text = "αž€αž˜αŸ’αž–αž»αž‡αžΆαž˜αžΆαž“αž”αŸ’αžšαž‡αžΆαž‡αž“αž”αŸ’αžšαž˜αžΆαžŽ ៑៦ αž›αžΆαž“αž“αžΆαž€αŸ‹ αž αžΎαž™αžœαžΆαž‚αžΊαž‡αžΆαž”αŸ’αžšαž‘αŸαžŸαž“αŸ…αžαŸ†αž”αž“αŸ‹αž’αžΆαžŸαŸŠαžΈαž’αžΆαž‚αŸ’αž“αŸαž™αŸαŸ”"
54
+ summary = summarize_khmer(khmer_text)
55
+ print("Khmer Summary:", summary)
56
+ ```
57
 
58
+ ### 2️⃣ Using Hugging Face Pipeline
59
 
60
+ For a simpler approach:
61
 
62
+ ```python
63
+ from transformers import pipeline
64
 
65
+ summarizer = pipeline("summarization", model="songhieng/khmer-mt5-summarization-1024tk")
66
+ khmer_text = "αž€αž˜αŸ’αž–αž»αž‡αžΆαž˜αžΆαž“αž”αŸ’αžšαž‡αžΆαž‡αž“αž”αŸ’αžšαž˜αžΆαžŽ ៑៦ αž›αžΆαž“αž“αžΆαž€αŸ‹ αž αžΎαž™αžœαžΆαž‚αžΊαž‡αžΆαž”αŸ’αžšαž‘αŸαžŸαž“αŸ…αžαŸ†αž”αž“αŸ‹αž’αžΆαžŸαŸŠαžΈαž’αžΆαž‚αŸ’αž“αŸαž™αŸαŸ”"
67
+ summary = summarizer(khmer_text, max_length=150, min_length=30, do_sample=False)
68
+ print("Khmer Summary:", summary[0]['summary_text'])
69
+ ```
70
 
71
+ ### 3️⃣ Deploy as an API using FastAPI
72
 
73
+ You can create a simple API for summarization:
74
 
75
+ ```python
76
+ from fastapi import FastAPI
77
 
78
+ app = FastAPI()
79
 
80
+ @app.post("/summarize/")
81
+ def summarize(text: str):
82
+ inputs = tokenizer(f"summarize: {text}", return_tensors="pt", truncation=True, max_length=1024)
83
+ summary_ids = model.generate(**inputs, max_length=150, num_beams=5, length_penalty=2.0, early_stopping=True)
84
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
85
+ return {"summary": summary}
86
 
87
+ # Run with: uvicorn filename:app --reload
88
+ ```
89
 
90
+ ## Model Evaluation
91
 
92
+ The model was evaluated using **ROUGE scores**, which measure the similarity between the generated summaries and the reference summaries.
93
 
94
+ ```python
95
+ from datasets import load_metric
96
 
97
+ rouge = load_metric("rouge")
98
 
99
+ def compute_metrics(pred):
100
+ labels_ids = pred.label_ids
101
+ pred_ids = pred.predictions
102
+ decoded_preds = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
103
+ decoded_labels = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
104
+ return rouge.compute(predictions=decoded_preds, references=decoded_labels)
105
 
106
+ trainer.evaluate()
107
+ ```
108
 
109
+ ## Saving & Uploading the Model
110
 
111
+ After fine-tuning, the model can be uploaded to the Hugging Face Hub:
112
 
113
+ ```python
114
+ model.push_to_hub("songhieng/khmer-mt5-summarization-1024tk")
115
+ tokenizer.push_to_hub("songhieng/khmer-mt5-summarization-1024tk")
116
+ ```
117
 
118
+ To download it later:
119
 
120
+ ```python
121
+ model = AutoModelForSeq2SeqLM.from_pretrained("songhieng/khmer-mt5-summarization-1024tk")
122
+ tokenizer = AutoTokenizer.from_pretrained("songhieng/khmer-mt5-summarization-1024tk")
123
+ ```
124
 
125
+ ## Summary
126
 
127
+ | **Feature** | **Details** |
128
+ |-----------------------|-------------------------------------------------|
129
+ | **Base Model** | `google/mt5-small` |
130
+ | **Task** | Summarization |
131
+ | **Language** | Khmer (αžαŸ’αž˜αŸ‚αžš) |
132
+ | **Dataset** | `kimleang123/khmer-text-dataset` |
133
+ | **Framework** | Hugging Face Transformers |
134
+ | **Evaluation Metric** | ROUGE Score |
135
+ | **Deployment** | Hugging Face Model Hub, API (FastAPI), Python Code |
136
 
137
+ ## Contributing
138
 
139
+ Contributions are welcome! Feel free to **open issues or submit pull requests** if you have any improvements or suggestions.
140
 
141
+ ### Contact
142
 
143
+ If you have any questions, feel free to reach out via [Hugging Face Discussions](https://huggingface.co/) or create an issue in the repository.
144
 
145
+ **Built for the Khmer NLP Community**