File size: 2,280 Bytes
467d487
 
0139643
 
 
 
 
 
 
 
 
 
 
 
 
5fc585e
0139643
 
 
 
 
 
 
5fc585e
0139643
5fc585e
467d487
 
0139643
 
467d487
0139643
467d487
0139643
 
 
 
467d487
0139643
467d487
0139643
467d487
0139643
467d487
0139643
467d487
0139643
467d487
0139643
467d487
0139643
467d487
0139643
467d487
0139643
 
 
 
 
 
 
 
 
 
 
 
467d487
0139643
467d487
0139643
 
 
 
 
 
 
 
467d487
 
0139643
467d487
0139643
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-vi-colab
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: vi
      split: test
      args: vi
    metrics:
    - type: wer
      value: 0.5489199491740788
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-vi-colab

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2851
- Wer: 0.5489

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 7.7334        | 4.3478  | 400  | 3.3851          | 1.0    |
| 1.5013        | 8.6957  | 800  | 1.4628          | 0.7461 |
| 0.3327        | 13.0435 | 1200 | 1.2413          | 0.6389 |
| 0.1772        | 17.3913 | 1600 | 1.2941          | 0.5988 |
| 0.1231        | 21.7391 | 2000 | 1.2715          | 0.5654 |
| 0.0891        | 26.0870 | 2400 | 1.2851          | 0.5489 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3