--- license: apache-2.0 datasets: - microsoft/cats_vs_dogs language: - en metrics: - accuracy - f1 - recall - precision pipeline_tag: image-classification --- --- language: en tags: - pytorch - image-classification - cats-vs-dogs - computer-vision datasets: - microsoft/cats_vs_dogs model-index: - name: Dogs vs Cats Classifier results: - task: type: image-classification name: Image Classification metrics: - type: accuracy value: 93.25 name: Validation Accuracy - type: roc_auc value: 0.9942 name: ROC AUC - type: precision value: 0.9769 name: Precision - type: recall value: 0.9615 name: Recall - type: f1 value: 0.9691 name: F1-Score license: mit --- # Dogs vs Cats Classifier This model classifies images as either cats or dogs using a Convolutional Neural Network (CNN) architecture. ## Model description Architecture: - 4 convolutional blocks (Conv2D → ReLU → BatchNorm → MaxPool) - Feature channels: 3→64→128→256→512 - Global average pooling - Fully connected layers: 512→256→1 - Binary classification output ## Training - Dataset: microsoft/cats_vs_dogs - Training/Validation split: 80/20 - Input size: 224x224 RGB images - Trained for 10 epochs - Best validation accuracy: 93.25% ## Intended uses - Image classification between cats and dogs - Transfer learning base for similar pet/animal classification tasks ## Limitations - Only trained on cats and dogs - May not perform well on: - Low quality/blurry images - Unusual angles/poses - Multiple animals in one image ## Input RGB images resized to 224x224 pixels, normalized using ImageNet statistics: - mean=[0.485, 0.456, 0.406] - std=[0.229, 0.224, 0.225] khouya abd elhamid rak bacha bla mona9acha