File size: 6,741 Bytes
34baeb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python

# from __future__ import print_function, division
"""

Purpose :

"""
import torch.nn
import torch
import torch.nn as nn

__author__ = "Chethan Radhakrishna and Soumick Chatterjee"
__credits__ = ["Chethan Radhakrishna", "Soumick Chatterjee"]
__license__ = "GPL"
__version__ = "1.0.0"
__maintainer__ = "Chethan Radhakrishna"
__email__ = "[email protected]"
__status__ = "Development"


class ConvBlock(nn.Module):
    """
    Convolution Block
    """

    def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
        super(ConvBlock, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding, bias=bias),
            nn.PReLU(num_parameters=out_channels, init=0.25),
            # nn.Dropout3d(),
            nn.BatchNorm3d(num_features=out_channels),
            nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding, bias=bias),
            nn.PReLU(num_parameters=out_channels, init=0.25),
            # nn.Dropout3d(),
            nn.BatchNorm3d(num_features=out_channels))

    def forward(self, x):
        x = self.conv(x)
        return x


class SeparableConvBlock(nn.Module):
    """
    Convolution Block
    """

    def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
        super(SeparableConvBlock, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
                      bias=bias),
            nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding, bias=bias),
            nn.PReLU(num_parameters=out_channels, init=0.25),
            # nn.Dropout3d(),
            nn.BatchNorm3d(num_features=out_channels),
            nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=1,
                      bias=bias),
            nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding, bias=bias),
            nn.PReLU(num_parameters=out_channels, init=0.25),
            # nn.Dropout3d(),
            nn.BatchNorm3d(num_features=out_channels))

    def forward(self, x):
        x = self.conv(x)
        return x


class UpConv(nn.Module):
    """
    Up Convolution Block
    """

    # def __init__(self, in_ch, out_ch):
    def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1):
        super(UpConv, self).__init__()
        self.up = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding),
            nn.BatchNorm3d(num_features=out_channels),
            nn.PReLU(num_parameters=out_channels, init=0.25))

    def forward(self, x):
        x = self.up(x)
        return x


class AttentionBlock(nn.Module):
    """
    Attention Block
    """

    def __init__(self, f_g, f_l, f_int):
        super(AttentionBlock, self).__init__()

        self.W_g = nn.Sequential(
            nn.Conv3d(f_l, f_int, kernel_size=1, stride=1, padding=0, bias=True),
            nn.BatchNorm3d(f_int)
        )

        self.W_x = nn.Sequential(
            nn.Conv3d(f_g, f_int, kernel_size=1, stride=1, padding=0, bias=True),
            nn.BatchNorm3d(f_int)
        )

        self.psi = nn.Sequential(
            nn.Conv3d(f_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
            nn.BatchNorm3d(1),
            nn.Sigmoid()
        )

        self.relu = nn.ReLU(inplace=True)

    def forward(self, g, x):
        g1 = self.W_g(g)
        x1 = self.W_x(x)
        psi = self.relu(g1 + x1)
        psi = self.psi(psi)
        out = x * psi
        return out


class AttUnet(nn.Module):
    """
    Attention Unet implementation
    Paper: https://arxiv.org/abs/1804.03999
    """

    def __init__(self, in_ch=1, out_ch=6, init_features=64):
        super(AttUnet, self).__init__()

        n1 = init_features
        filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]

        self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)

        self.Conv1 = ConvBlock(in_ch, filters[0])
        self.Conv2 = SeparableConvBlock(filters[0], filters[1])
        self.Conv3 = SeparableConvBlock(filters[1], filters[2])
        self.Conv4 = SeparableConvBlock(filters[2], filters[3])
        self.Conv5 = SeparableConvBlock(filters[3], filters[4])

        self.Up5 = UpConv(filters[4], filters[3])
        self.Att5 = AttentionBlock(f_g=filters[3], f_l=filters[3], f_int=filters[2])
        self.Up_conv5 = SeparableConvBlock(filters[4], filters[3])

        self.Up4 = UpConv(filters[3], filters[2])
        self.Att4 = AttentionBlock(f_g=filters[2], f_l=filters[2], f_int=filters[1])
        self.Up_conv4 = SeparableConvBlock(filters[3], filters[2])

        self.Up3 = UpConv(filters[2], filters[1])
        self.Att3 = AttentionBlock(f_g=filters[1], f_l=filters[1], f_int=filters[0])
        self.Up_conv3 = SeparableConvBlock(filters[2], filters[1])

        self.Up2 = UpConv(filters[1], filters[0])
        self.Att2 = AttentionBlock(f_g=filters[0], f_l=filters[0], f_int=32)
        self.Up_conv2 = ConvBlock(filters[1], filters[0])

        self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)

        # self.active = torch.nn.Sigmoid()

    def forward(self, x):
        e1 = self.Conv1(x)

        e2 = self.Maxpool1(e1)
        e2 = self.Conv2(e2)

        e3 = self.Maxpool2(e2)
        e3 = self.Conv3(e3)

        e4 = self.Maxpool3(e3)
        e4 = self.Conv4(e4)

        e5 = self.Maxpool4(e4)
        e5 = self.Conv5(e5)

        d5 = self.Up5(e5)
        x4 = self.Att5(d5, e4)
        d5 = torch.cat((x4, d5), dim=1)
        d5 = self.Up_conv5(d5)

        d4 = self.Up4(d5)
        x3 = self.Att4(d4, e3)
        d4 = torch.cat((x3, d4), dim=1)
        d4 = self.Up_conv4(d4)

        d3 = self.Up3(d4)
        x2 = self.Att3(d3, e2)
        d3 = torch.cat((x2, d3), dim=1)
        d3 = self.Up_conv3(d3)

        d2 = self.Up2(d3)
        x1 = self.Att2(d2, e1)
        d2 = torch.cat((x1, d2), dim=1)
        d2 = self.Up_conv2(d2)

        out = self.Conv(d2)

        #  out = self.active(out)

        return out