File size: 8,885 Bytes
d9f6653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python

# from __future__ import print_function, division
'''

Purpose : 

'''


import torch
import torch.nn as nn
import torch.utils.data

__author__ = "Kartik Prabhu, Mahantesh Pattadkal, and Soumick Chatterjee"
__copyright__ = "Copyright 2020, Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany"
__credits__ = ["Kartik Prabhu", "Mahantesh Pattadkal", "Soumick Chatterjee"]
__license__ = "GPL"
__version__ = "1.0.0"
__maintainer__ = "Soumick Chatterjee"
__email__ = "[email protected]"
__status__ = "Production"

class conv_block(nn.Module):
    """
    Convolution Block
    """

    def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
        super(conv_block, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding, bias=bias),
            nn.BatchNorm3d(num_features=out_channels),
            nn.ReLU(inplace=True),
            nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding, bias=bias),
            nn.BatchNorm3d(num_features=out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        x = self.conv(x)
        return x


class up_conv(nn.Module):
    """
    Up Convolution Block
    """

    # def __init__(self, in_ch, out_ch):
    def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
        super(up_conv, self).__init__()
        self.up = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
                      stride=stride, padding=padding, bias=bias),
            nn.BatchNorm3d(num_features=out_channels),
            nn.ReLU(inplace=True))

    def forward(self, x):
        x = self.up(x)
        return x


class U_Net(nn.Module):
    """
    UNet - Basic Implementation
    Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width].
    Paper : https://arxiv.org/abs/1505.04597
    """

    def __init__(self, in_ch=1, out_ch=1, init_features=64):
        super(U_Net, self).__init__()

        n1 = init_features 
        filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]  # 64,128,256,512,1024

        self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)

        self.Conv1 = conv_block(in_ch, filters[0])
        self.Conv2 = conv_block(filters[0], filters[1])
        self.Conv3 = conv_block(filters[1], filters[2])
        self.Conv4 = conv_block(filters[2], filters[3])
        self.Conv5 = conv_block(filters[3], filters[4])

        self.Up5 = up_conv(filters[4], filters[3])
        self.Up_conv5 = conv_block(filters[4], filters[3])

        self.Up4 = up_conv(filters[3], filters[2])
        self.Up_conv4 = conv_block(filters[3], filters[2])

        self.Up3 = up_conv(filters[2], filters[1])
        self.Up_conv3 = conv_block(filters[2], filters[1])

        self.Up2 = up_conv(filters[1], filters[0])
        self.Up_conv2 = conv_block(filters[1], filters[0])

        self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)

    # self.active = torch.nn.Sigmoid()

    def forward(self, x):
        # print("unet")
        # print(x.shape)
        # print(padded.shape)

        e1 = self.Conv1(x)
        # print("conv1:")
        # print(e1.shape)

        e2 = self.Maxpool1(e1)
        e2 = self.Conv2(e2)
        # print("conv2:")
        # print(e2.shape)

        e3 = self.Maxpool2(e2)
        e3 = self.Conv3(e3)
        # print("conv3:")
        # print(e3.shape)

        e4 = self.Maxpool3(e3)
        e4 = self.Conv4(e4)
        # print("conv4:")
        # print(e4.shape)

        e5 = self.Maxpool4(e4)
        e5 = self.Conv5(e5)
        # print("conv5:")
        # print(e5.shape)

        d5 = self.Up5(e5)
        # print("d5:")
        # print(d5.shape)
        # print("e4:")
        # print(e4.shape)
        d5 = torch.cat((e4, d5), dim=1)
        d5 = self.Up_conv5(d5)
        # print("upconv5:")
        # print(d5.size)

        d4 = self.Up4(d5)
        # print("d4:")
        # print(d4.shape)
        d4 = torch.cat((e3, d4), dim=1)
        d4 = self.Up_conv4(d4)
        # print("upconv4:")
        # print(d4.shape)
        d3 = self.Up3(d4)
        d3 = torch.cat((e2, d3), dim=1)
        d3 = self.Up_conv3(d3)
        # print("upconv3:")
        # print(d3.shape)
        d2 = self.Up2(d3)
        d2 = torch.cat((e1, d2), dim=1)
        d2 = self.Up_conv2(d2)
        # print("upconv2:")
        # print(d2.shape)
        out = self.Conv(d2)
        # print("out:")
        # print(out.shape)
        # d1 = self.active(out)

        return [out]

class U_Net_DeepSup(nn.Module):
    """
    UNet - Basic Implementation
    Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width].
    Paper : https://arxiv.org/abs/1505.04597
    """

    def __init__(self, in_ch=1, out_ch=1, init_features=64):
        super(U_Net_DeepSup, self).__init__()

        n1 = init_features
        filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]  # 64,128,256,512,1024

        self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
        self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)

        self.Conv1 = conv_block(in_ch, filters[0])
        self.Conv2 = conv_block(filters[0], filters[1])
        self.Conv3 = conv_block(filters[1], filters[2])
        self.Conv4 = conv_block(filters[2], filters[3])
        self.Conv5 = conv_block(filters[3], filters[4])

        #1x1x1 Convolution for Deep Supervision
        self.Conv_d3 = conv_block(filters[1], 1)
        self.Conv_d4 = conv_block(filters[2], 1)



        self.Up5 = up_conv(filters[4], filters[3])
        self.Up_conv5 = conv_block(filters[4], filters[3])

        self.Up4 = up_conv(filters[3], filters[2])
        self.Up_conv4 = conv_block(filters[3], filters[2])

        self.Up3 = up_conv(filters[2], filters[1])
        self.Up_conv3 = conv_block(filters[2], filters[1])

        self.Up2 = up_conv(filters[1], filters[0])
        self.Up_conv2 = conv_block(filters[1], filters[0])

        self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)

        for submodule in self.modules():
            submodule.register_forward_hook(self.nan_hook)

    # self.active = torch.nn.Sigmoid()

    def nan_hook(self, module, inp, output):
        for i, out in enumerate(output):
            nan_mask = torch.isnan(out)
            if nan_mask.any():
                print("In", self.__class__.__name__)
                print(module)
                raise RuntimeError(f"Found NAN in output {i} at indices: ", nan_mask.nonzero(), "where:", out[nan_mask.nonzero()[:, 0].unique(sorted=True)])

    def forward(self, x):
        # print("unet")
        # print(x.shape)
        # print(padded.shape)

        e1 = self.Conv1(x)
        # print("conv1:")
        # print(e1.shape)

        e2 = self.Maxpool1(e1)
        e2 = self.Conv2(e2)
        # print("conv2:")
        # print(e2.shape)

        e3 = self.Maxpool2(e2)
        e3 = self.Conv3(e3)
        # print("conv3:")
        # print(e3.shape)

        e4 = self.Maxpool3(e3)
        e4 = self.Conv4(e4)
        # print("conv4:")
        # print(e4.shape)

        e5 = self.Maxpool4(e4)
        e5 = self.Conv5(e5)
        # print("conv5:")
        # print(e5.shape)

        d5 = self.Up5(e5)
        # print("d5:")
        # print(d5.shape)
        # print("e4:")
        # print(e4.shape)
        d5 = torch.cat((e4, d5), dim=1)
        d5 = self.Up_conv5(d5)
        # print("upconv5:")
        # print(d5.size)

        d4 = self.Up4(d5)
        # print("d4:")
        # print(d4.shape)
        d4 = torch.cat((e3, d4), dim=1)
        d4 = self.Up_conv4(d4)
        d4_out  = self.Conv_d4(d4)
        
                
        # print("upconv4:")
        # print(d4.shape)
        d3 = self.Up3(d4)
        d3 = torch.cat((e2, d3), dim=1)
        d3 = self.Up_conv3(d3)        
        d3_out  = self.Conv_d3(d3)

        # print("upconv3:")
        # print(d3.shape)
        d2 = self.Up2(d3)
        d2 = torch.cat((e1, d2), dim=1)
        d2 = self.Up_conv2(d2)
        # print("upconv2:")
        # print(d2.shape)
        out = self.Conv(d2)
        # print("out:")
        # print(out.shape)
        # d1 = self.active(out)

        return [out, d3_out , d4_out]