File size: 27,509 Bytes
d341fab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import torch
import torch.nn as nn
from .ProbUNet_utils import make_onehot as make_onehot_segmentation, make_slices, match_to
def is_conv(op):
conv_types = (nn.Conv1d,
nn.Conv2d,
nn.Conv3d,
nn.ConvTranspose1d,
nn.ConvTranspose2d,
nn.ConvTranspose3d)
if type(op) == type and issubclass(op, conv_types):
return True
elif type(op) in conv_types:
return True
else:
return False
class ConvModule(nn.Module):
def __init__(self, *args, **kwargs):
super(ConvModule, self).__init__()
def init_weights(self, init_fn, *args, **kwargs):
class init_(object):
def __init__(self):
self.fn = init_fn
self.args = args
self.kwargs = kwargs
def __call__(self, module):
if is_conv(type(module)):
module.weight = self.fn(module.weight, *self.args, **self.kwargs)
_init_ = init_()
self.apply(_init_)
def init_bias(self, init_fn, *args, **kwargs):
class init_(object):
def __init__(self):
self.fn = init_fn
self.args = args
self.kwargs = kwargs
def __call__(self, module):
if is_conv(type(module)) and module.bias is not None:
module.bias = self.fn(module.bias, *self.args, **self.kwargs)
_init_ = init_()
self.apply(_init_)
class ConcatCoords(nn.Module):
def forward(self, input_):
dim = input_.dim() - 2
coord_channels = []
for i in range(dim):
view = [1, ] * dim
view[i] = -1
repeat = list(input_.shape[2:])
repeat[i] = 1
coord_channels.append(
torch.linspace(-0.5, 0.5, input_.shape[i+2])
.view(*view)
.repeat(*repeat)
.to(device=input_.device, dtype=input_.dtype))
coord_channels = torch.stack(coord_channels).unsqueeze(0)
repeat = [1, ] * input_.dim()
repeat[0] = input_.shape[0]
coord_channels = coord_channels.repeat(*repeat).contiguous()
return torch.cat([input_, coord_channels], 1)
class InjectionConvEncoder(ConvModule):
_default_activation_kwargs = dict(inplace=True)
_default_norm_kwargs = dict()
_default_conv_kwargs = dict(kernel_size=3, padding=1)
_default_pool_kwargs = dict(kernel_size=2)
_default_dropout_kwargs = dict()
_default_global_pool_kwargs = dict()
def __init__(self,
in_channels=1,
out_channels=6,
depth=4,
injection_depth="last",
injection_channels=0,
block_depth=2,
num_feature_maps=24,
feature_map_multiplier=2,
activation_op=nn.LeakyReLU,
activation_kwargs=None,
norm_op=nn.InstanceNorm2d,
norm_kwargs=None,
norm_depth=0,
conv_op=nn.Conv2d,
conv_kwargs=None,
pool_op=nn.AvgPool2d,
pool_kwargs=None,
dropout_op=None,
dropout_kwargs=None,
global_pool_op=nn.AdaptiveAvgPool2d,
global_pool_kwargs=None,
**kwargs):
super(InjectionConvEncoder, self).__init__(**kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.depth = depth
self.injection_depth = depth - 1 if injection_depth == "last" else injection_depth
self.injection_channels = injection_channels
self.block_depth = block_depth
self.num_feature_maps = num_feature_maps
self.feature_map_multiplier = feature_map_multiplier
self.activation_op = activation_op
self.activation_kwargs = self._default_activation_kwargs
if activation_kwargs is not None:
self.activation_kwargs.update(activation_kwargs)
self.norm_op = norm_op
self.norm_kwargs = self._default_norm_kwargs
if norm_kwargs is not None:
self.norm_kwargs.update(norm_kwargs)
self.norm_depth = depth if norm_depth == "full" else norm_depth
self.conv_op = conv_op
self.conv_kwargs = self._default_conv_kwargs
if conv_kwargs is not None:
self.conv_kwargs.update(conv_kwargs)
self.pool_op = pool_op
self.pool_kwargs = self._default_pool_kwargs
if pool_kwargs is not None:
self.pool_kwargs.update(pool_kwargs)
self.dropout_op = dropout_op
self.dropout_kwargs = self._default_dropout_kwargs
if dropout_kwargs is not None:
self.dropout_kwargs.update(dropout_kwargs)
self.global_pool_op = global_pool_op
self.global_pool_kwargs = self._default_global_pool_kwargs
if global_pool_kwargs is not None:
self.global_pool_kwargs.update(global_pool_kwargs)
for d in range(self.depth):
in_ = self.in_channels if d == 0 else self.num_feature_maps * (self.feature_map_multiplier**(d-1))
out_ = self.num_feature_maps * (self.feature_map_multiplier**d)
if d == self.injection_depth + 1:
in_ += self.injection_channels
layers = []
if d > 0:
layers.append(self.pool_op(**self.pool_kwargs))
for b in range(self.block_depth):
current_in = in_ if b == 0 else out_
layers.append(self.conv_op(current_in, out_, **self.conv_kwargs))
if self.norm_op is not None and d < self.norm_depth:
layers.append(self.norm_op(out_, **self.norm_kwargs))
if self.activation_op is not None:
layers.append(self.activation_op(**self.activation_kwargs))
if self.dropout_op is not None:
layers.append(self.dropout_op(**self.dropout_kwargs))
if d == self.depth - 1:
current_conv_kwargs = self.conv_kwargs.copy()
current_conv_kwargs["kernel_size"] = 1
current_conv_kwargs["padding"] = 0
current_conv_kwargs["bias"] = False
layers.append(self.conv_op(out_, out_channels, **current_conv_kwargs))
self.add_module("encode_{}".format(d), nn.Sequential(*layers))
if self.global_pool_op is not None:
self.add_module("global_pool", self.global_pool_op(1, **self.global_pool_kwargs))
def forward(self, x, injection=None):
for d in range(self.depth):
x = self._modules["encode_{}".format(d)](x)
if d == self.injection_depth and self.injection_channels > 0:
injection = match_to(injection, x, self.injection_channels)
x = torch.cat([x, injection], 1)
if hasattr(self, "global_pool"):
x = self.global_pool(x)
return x
class InjectionConvEncoder3D(InjectionConvEncoder):
def __init__(self, *args, **kwargs):
update_kwargs = dict(
norm_op=nn.InstanceNorm3d,
conv_op=nn.Conv3d,
pool_op=nn.AvgPool3d,
global_pool_op=nn.AdaptiveAvgPool3d
)
for (arg, val) in update_kwargs.items():
if arg not in kwargs: kwargs[arg] = val
super(InjectionConvEncoder3D, self).__init__(*args, **kwargs)
class InjectionConvEncoder2D(InjectionConvEncoder): #Created by Soumick
def __init__(self, *args, **kwargs):
update_kwargs = dict(
norm_op=nn.InstanceNorm2d,
conv_op=nn.Conv2d,
pool_op=nn.AvgPool2d,
global_pool_op=nn.AdaptiveAvgPool2d
)
for (arg, val) in update_kwargs.items():
if arg not in kwargs: kwargs[arg] = val
super(InjectionConvEncoder2D, self).__init__(*args, **kwargs)
class InjectionUNet(ConvModule):
def __init__(
self,
depth=5,
in_channels=4,
out_channels=4,
kernel_size=3,
dilation=1,
num_feature_maps=24,
block_depth=2,
num_1x1_at_end=3,
injection_channels=3,
injection_at="end",
activation_op=nn.LeakyReLU,
activation_kwargs=None,
pool_op=nn.AvgPool2d,
pool_kwargs=dict(kernel_size=2),
dropout_op=None,
dropout_kwargs=None,
norm_op=nn.InstanceNorm2d,
norm_kwargs=None,
conv_op=nn.Conv2d,
conv_kwargs=None,
upconv_op=nn.ConvTranspose2d,
upconv_kwargs=None,
output_activation_op=None,
output_activation_kwargs=None,
return_bottom=False,
coords=False,
coords_dim=2,
**kwargs
):
super(InjectionUNet, self).__init__(**kwargs)
self.depth = depth
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.dilation = dilation
self.padding = (self.kernel_size + (self.kernel_size-1) * (self.dilation-1)) // 2
self.num_feature_maps = num_feature_maps
self.block_depth = block_depth
self.num_1x1_at_end = num_1x1_at_end
self.injection_channels = injection_channels
self.injection_at = injection_at
self.activation_op = activation_op
self.activation_kwargs = {} if activation_kwargs is None else activation_kwargs
self.pool_op = pool_op
self.pool_kwargs = {} if pool_kwargs is None else pool_kwargs
self.dropout_op = dropout_op
self.dropout_kwargs = {} if dropout_kwargs is None else dropout_kwargs
self.norm_op = norm_op
self.norm_kwargs = {} if norm_kwargs is None else norm_kwargs
self.conv_op = conv_op
self.conv_kwargs = {} if conv_kwargs is None else conv_kwargs
self.upconv_op = upconv_op
self.upconv_kwargs = {} if upconv_kwargs is None else upconv_kwargs
self.output_activation_op = output_activation_op
self.output_activation_kwargs = {} if output_activation_kwargs is None else output_activation_kwargs
self.return_bottom = return_bottom
if not coords:
self.coords = [[], []]
elif coords is True:
self.coords = [list(range(depth)), []]
else:
self.coords = coords
self.coords_dim = coords_dim
self.last_activations = None
# BUILD ENCODER
for d in range(self.depth):
block = []
if d > 0:
block.append(self.pool_op(**self.pool_kwargs))
for i in range(self.block_depth):
# bottom block fixed to have depth 1
if d == self.depth - 1 and i > 0:
continue
out_size = self.num_feature_maps * 2**d
if d == 0 and i == 0:
in_size = self.in_channels
elif i == 0:
in_size = self.num_feature_maps * 2**(d - 1)
else:
in_size = out_size
# check for coord appending at this depth
if d in self.coords[0] and i == 0:
block.append(ConcatCoords())
in_size += self.coords_dim
block.append(self.conv_op(in_size,
out_size,
self.kernel_size,
padding=self.padding,
dilation=self.dilation,
**self.conv_kwargs))
if self.dropout_op is not None:
block.append(self.dropout_op(**self.dropout_kwargs))
if self.norm_op is not None:
block.append(self.norm_op(out_size, **self.norm_kwargs))
block.append(self.activation_op(**self.activation_kwargs))
self.add_module("encode-{}".format(d), nn.Sequential(*block))
# BUILD DECODER
for d in reversed(range(self.depth)):
block = []
for i in range(self.block_depth):
# bottom block fixed to have depth 1
if d == self.depth - 1 and i > 0:
continue
out_size = self.num_feature_maps * 2**(d)
if i == 0 and d < self.depth - 1:
in_size = self.num_feature_maps * 2**(d+1)
elif i == 0 and self.injection_at == "bottom":
in_size = out_size + self.injection_channels
else:
in_size = out_size
# check for coord appending at this depth
if d in self.coords[0] and i == 0 and d < self.depth - 1:
block.append(ConcatCoords())
in_size += self.coords_dim
block.append(self.conv_op(in_size,
out_size,
self.kernel_size,
padding=self.padding,
dilation=self.dilation,
**self.conv_kwargs))
if self.dropout_op is not None:
block.append(self.dropout_op(**self.dropout_kwargs))
if self.norm_op is not None:
block.append(self.norm_op(out_size, **self.norm_kwargs))
block.append(self.activation_op(**self.activation_kwargs))
if d > 0:
block.append(self.upconv_op(out_size,
out_size // 2,
self.kernel_size,
2,
padding=self.padding,
dilation=self.dilation,
output_padding=1,
**self.upconv_kwargs))
self.add_module("decode-{}".format(d), nn.Sequential(*block))
if self.injection_at == "end":
out_size += self.injection_channels
in_size = out_size
for i in range(self.num_1x1_at_end):
if i == self.num_1x1_at_end - 1:
out_size = self.out_channels
current_conv_kwargs = self.conv_kwargs.copy()
current_conv_kwargs["bias"] = True
self.add_module("reduce-{}".format(i), self.conv_op(in_size, out_size, 1, **current_conv_kwargs))
if i != self.num_1x1_at_end - 1:
self.add_module("reduce-{}-nonlin".format(i), self.activation_op(**self.activation_kwargs))
if self.output_activation_op is not None:
self.add_module("output-activation", self.output_activation_op(**self.output_activation_kwargs))
def reset(self):
self.last_activations = None
def forward(self, x, injection=None, reuse_last_activations=False, store_activations=False):
if self.injection_at == "bottom": # not worth it for now
reuse_last_activations = False
store_activations = False
if self.last_activations is None or reuse_last_activations is False:
enc = [x]
for i in range(self.depth - 1):
enc.append(self._modules["encode-{}".format(i)](enc[-1]))
bottom_rep = self._modules["encode-{}".format(self.depth - 1)](enc[-1])
if self.injection_at == "bottom" and self.injection_channels > 0:
injection = match_to(injection, bottom_rep, (0, 1))
bottom_rep = torch.cat((bottom_rep, injection), 1)
x = self._modules["decode-{}".format(self.depth - 1)](bottom_rep)
for i in reversed(range(self.depth - 1)):
x = self._modules["decode-{}".format(i)](torch.cat((enc[-(self.depth - 1 - i)], x), 1))
if store_activations:
self.last_activations = x.detach()
else:
x = self.last_activations
if self.injection_at == "end" and self.injection_channels > 0:
injection = match_to(injection, x, (0, 1))
x = torch.cat((x, injection), 1)
for i in range(self.num_1x1_at_end):
x = self._modules["reduce-{}".format(i)](x)
if self.output_activation_op is not None:
x = self._modules["output-activation"](x)
if self.return_bottom and not reuse_last_activations:
return x, bottom_rep
else:
return x
class InjectionUNet3D(InjectionUNet):
def __init__(self, *args, **kwargs):
update_kwargs = dict(
pool_op=nn.AvgPool3d,
norm_op=nn.InstanceNorm3d,
conv_op=nn.Conv3d,
upconv_op=nn.ConvTranspose3d,
coords_dim=3
)
for (arg, val) in update_kwargs.items():
if arg not in kwargs: kwargs[arg] = val
super(InjectionUNet3D, self).__init__(*args, **kwargs)
class InjectionUNet2D(InjectionUNet): #Created by Soumick
def __init__(self, *args, **kwargs):
update_kwargs = dict(
pool_op=nn.AvgPool2d,
norm_op=nn.InstanceNorm2d,
conv_op=nn.Conv2d,
upconv_op=nn.ConvTranspose2d,
coords_dim=2
)
for (arg, val) in update_kwargs.items():
if arg not in kwargs: kwargs[arg] = val
super(InjectionUNet2D, self).__init__(*args, **kwargs)
class ProbabilisticSegmentationNet(ConvModule):
def __init__(self,
in_channels=4,
out_channels=4,
num_feature_maps=24,
latent_size=3,
depth=5,
latent_distribution=torch.distributions.Normal,
task_op=InjectionUNet3D,
task_kwargs=None,
prior_op=InjectionConvEncoder3D,
prior_kwargs=None,
posterior_op=InjectionConvEncoder3D,
posterior_kwargs=None,
**kwargs):
super(ProbabilisticSegmentationNet, self).__init__(**kwargs)
self.task_op = task_op
self.task_kwargs = {} if task_kwargs is None else task_kwargs
self.prior_op = prior_op
self.prior_kwargs = {} if prior_kwargs is None else prior_kwargs
self.posterior_op = posterior_op
self.posterior_kwargs = {} if posterior_kwargs is None else posterior_kwargs
default_task_kwargs = dict(
in_channels=in_channels,
out_channels=out_channels,
num_feature_maps=num_feature_maps,
injection_size=latent_size,
depth=depth
)
default_prior_kwargs = dict(
in_channels=in_channels,
out_channels=latent_size*2, #Soumick
num_feature_maps=num_feature_maps,
z_dim=latent_size,
depth=depth
)
default_posterior_kwargs = dict(
in_channels=in_channels+out_channels,
out_channels=latent_size*2, #Soumick
num_feature_maps=num_feature_maps,
z_dim=latent_size,
depth=depth
)
default_task_kwargs.update(self.task_kwargs)
self.task_kwargs = default_task_kwargs
default_prior_kwargs.update(self.prior_kwargs)
self.prior_kwargs = default_prior_kwargs
default_posterior_kwargs.update(self.posterior_kwargs)
self.posterior_kwargs = default_posterior_kwargs
self.latent_distribution = latent_distribution
self._prior = None
self._posterior = None
self.make_modules()
def make_modules(self):
if type(self.task_op) == type:
self.add_module("task_net", self.task_op(**self.task_kwargs))
else:
self.add_module("task_net", self.task_op)
if type(self.prior_op) == type:
self.add_module("prior_net", self.prior_op(**self.prior_kwargs))
else:
self.add_module("prior_net", self.prior_op)
if type(self.posterior_op) == type:
self.add_module("posterior_net", self.posterior_op(**self.posterior_kwargs))
else:
self.add_module("posterior_net", self.posterior_op)
@property
def prior(self):
return self._prior
@property
def posterior(self):
return self._posterior
@property
def last_activations(self):
return self.task_net.last_activations
def train(self, mode=True):
super(ProbabilisticSegmentationNet, self).train(mode)
self.reset()
def reset(self):
self.task_net.reset()
self._prior = None
self._posterior = None
def forward(self, input_, seg=None, make_onehot=True, make_onehot_classes=None, newaxis=False, distlossN=0):
"""Forward pass includes reparametrization sampling during training, otherwise it'll just take the prior mean."""
self.encode_prior(input_)
if distlossN == 0:
if self.training:
self.encode_posterior(input_, seg, make_onehot, make_onehot_classes, newaxis)
sample = self.posterior.rsample()
else:
sample = self.prior.loc
return self.task_net(input_, sample, store_activations=not self.training)
else:
if self.training:
self.encode_posterior(input_, seg, make_onehot, make_onehot_classes, newaxis)
segs = []
for i in range(distlossN):
sample = self.posterior.rsample()
segs.append(self.task_net(input_, sample, store_activations=not self.training))
return segs #torch.concat(segs, dim=0)
else: #I'm not totally sure about this!!
sample = self.prior.loc
return self.task_net(input_, sample, store_activations=not self.training)
def encode_prior(self, input_):
rep = self.prior_net(input_)
if isinstance(rep, tuple):
mean, logvar = rep
elif torch.is_tensor(rep):
mean, logvar = torch.split(rep, rep.shape[1] // 2, dim=1)
self._prior = self.latent_distribution(mean, logvar.mul(0.5).exp())
return self._prior
def encode_posterior(self, input_, seg, make_onehot=True, make_onehot_classes=None, newaxis=False):
if make_onehot:
if make_onehot_classes is None:
make_onehot_classes = tuple(range(self.posterior_net.in_channels - input_.shape[1]))
seg = make_onehot_segmentation(seg, make_onehot_classes, newaxis=newaxis)
rep = self.posterior_net(torch.cat((input_, seg.float()), 1))
if isinstance(rep, tuple):
mean, logvar = rep
elif torch.is_tensor(rep):
mean, logvar = torch.split(rep, rep.shape[1] // 2, dim=1)
self._posterior = self.latent_distribution(mean, logvar.mul(0.5).exp())
return self._posterior
def sample_prior(self, N=1, out_device=None, input_=None, pred_with_mean=False):
"""Draw multiple samples from the current prior.
* input_ is required if no activations are stored in task_net.
* If input_ is given, prior will automatically be encoded again.
* Returns either a single sample or a list of samples.
"""
if out_device is None:
if self.last_activations is not None:
out_device = self.last_activations.device
elif input_ is not None:
out_device = input_.device
else:
out_device = next(self.task_net.parameters()).device
with torch.no_grad():
if self.prior is None or input_ is not None:
self.encode_prior(input_)
result = []
if input_ is not None:
result.append(self.task_net(input_, self.prior.sample(), reuse_last_activations=False, store_activations=True).to(device=out_device))
while len(result) < N:
result.append(self.task_net(input_,
self.prior.sample(),
reuse_last_activations=self.last_activations is not None,
store_activations=False).to(device=out_device))
if pred_with_mean:
result.append(self.task_net(input_, self.prior.mean, reuse_last_activations=False, store_activations=True).to(device=out_device))
if len(result) == 1:
return result[0]
else:
return result
def reconstruct(self, sample=None, use_posterior_mean=True, out_device=None, input_=None):
"""Reconstruct a sample or the current posterior mean. Will not compute gradients!"""
if self.posterior is None and sample is None:
raise ValueError("'posterior' is currently None. Please pass an input and a segmentation first.")
if out_device is None:
out_device = next(self.task_net.parameters()).device
if sample is None:
if use_posterior_mean:
sample = self.posterior.loc
else:
sample = self.posterior.sample()
else:
sample = sample.to(next(self.task_net.parameters()).device)
with torch.no_grad():
return self.task_net(input_, sample, reuse_last_activations=True).to(device=out_device)
def kl_divergence(self):
"""Compute current KL, requires existing prior and posterior."""
if self.posterior is None or self.prior is None:
raise ValueError("'prior' and 'posterior' must not be None, but prior={} and posterior={}".format(self.prior, self.posterior))
return torch.distributions.kl_divergence(self.posterior, self.prior).sum()
def elbo(self, seg, input_=None, nll_reduction="sum", beta=1.0, make_onehot=True, make_onehot_classes=None, newaxis=False):
"""Compute the ELBO with seg as ground truth.
* Prior is expected and will not be encoded.
* If input_ is given, posterior will automatically be encoded.
* Either input_ or stored activations must be available.
"""
if self.last_activations is None:
raise ValueError("'last_activations' is currently None. Please pass an input first.")
if input_ is not None:
with torch.no_grad():
self.encode_posterior(input_, seg, make_onehot=make_onehot, make_onehot_classes=make_onehot_classes, newaxis=newaxis)
if make_onehot and newaxis:
pass # seg will already be (B x SPACE)
elif make_onehot and not newaxis:
seg = seg[:, 0] # in this case seg will hopefully be (B x 1 x SPACE)
else:
seg = torch.argmax(seg, 1, keepdim=False) # seg is already onehot
kl = self.kl_divergence()
nll = nn.NLLLoss(reduction=nll_reduction)(self.reconstruct(sample=None, use_posterior_mean=True, out_device=None), seg.long())
return - (beta * nll + kl) |