soumickmj commited on
Commit
82b89a5
1 Parent(s): d341fab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - medical
6
+ - probabilistic unet
7
+ - 2D
8
+ - PULASki
9
+ - multiple sclerosis segmentation
10
+ - multiple sclerosis
11
+ - 3T FLAIR
12
+ - FLAIR
13
+ - MRI
14
+ - 3T
15
+ - multiple rater
16
+ - Conditional VAE
17
+ - distribution distance
18
+ library_name: pytorch
19
+ ---
20
+ # PULASki_ProbUNet2D_Base_MSSeg
21
+
22
+ In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification.
23
+
24
+ We proposed the PULASki as a computationally efficient generative tool for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems.
25
+
26
+ ## Model Details
27
+
28
+ It was introduced in [PULASki: Learning inter-rater variability using statistical distances to improve
29
+ probabilistic segmentation](https://arxiv.org/abs/2312.15686) by Soumick Chatterjee, Franziska Gaidzik, Alessandro Sciarra, Hendrik Mattern, Gábor Janiga, Oliver Speck, Andreas Nürnberger, Sahani Pathiraja.
30
+
31
+ ### Model Description
32
+
33
+ - **Developed by:** Dr Soumick Chatterjee
34
+ - **Model type:** 2D Probabilistic UNet (PULASki's baseline), trained (without a distribution distance loss) with Focal Tversky loss (FTL)
35
+ - **Task:** Probabilistic multiple sclerosis (MS) segmentation in 3T MRI FLAIR volumes - provides 7 segmentations for each input volume
36
+ - **Training dataset:** 3T FLAIR MRIs from the MS segmentation dataset of a MICCAI 2016 challenge, details mentioned in Sec. 4.1 of https://arxiv.org/pdf/2312.15686
37
+
38
+ ### Model Sources
39
+
40
+ <!-- Provide the basic links for the model. -->
41
+
42
+ - **Repository:** https://github.com/soumickmj/PULASki
43
+ - **Paper:** https://arxiv.org/abs/2312.15686
44
+
45
+ ## Citation
46
+
47
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
48
+
49
+ If you use this approach in your research or use codes from this repository or these weights, please cite the following in your publications:
50
+
51
+ **BibTeX:**
52
+
53
+ ```bibtex
54
+ @article{chatterjee2023pulaski,
55
+ title={PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation},
56
+ author={Chatterjee, Soumick and Gaidzik, Franziska and Sciarra, Alessandro and Mattern, Hendrik and Janiga, G{\'a}bor and Speck, Oliver and N{\"u}rnberger, Andreas and Pathiraja, Sahani},
57
+ journal={arXiv preprint arXiv:2312.15686},
58
+ year={2023}
59
+ }
60
+
61
+ ```
62
+
63
+ **APA:**
64
+
65
+ Chatterjee, S., Gaidzik, F., Sciarra, A., Mattern, H., Janiga, G., Speck, O., Nuernberger, A., & Pathiraja, S. (2023). PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation. arXiv preprint arXiv:2312.15686.