soumickmj commited on
Commit
5ffde7d
1 Parent(s): 28b6cf8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -3
README.md CHANGED
@@ -1,3 +1,63 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - medical
6
+ - probabilistic unet
7
+ - PULASki
8
+ - vessel segmentation
9
+ - 7T MRA-ToF
10
+ - MRA
11
+ - TOF
12
+ - MRI
13
+ - 7T
14
+ - Conditional VAE
15
+ - distribution distance
16
+ library_name: pytorch
17
+ ---
18
+ # PULASki_ProbUNet3D_Base_VSeg
19
+
20
+ In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification.
21
+
22
+ We proposed the PULASki as a computationally efficient generative tool for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems.
23
+
24
+ ## Model Details
25
+
26
+ It was introduced in [PULASki: Learning inter-rater variability using statistical distances to improve
27
+ probabilistic segmentation](https://arxiv.org/abs/2312.15686) by Soumick Chatterjee, Franziska Gaidzik, Alessandro Sciarra, Hendrik Mattern, Gábor Janiga, Oliver Speck, Andreas Nürnberger, Sahani Pathiraja.
28
+
29
+ ### Model Description
30
+
31
+ - **Developed by:** Dr Soumick Chatterjee
32
+ - **Model type:** 3D Probabilistic UNet (PULASki's baseline), trained (without a distribution distance loss) with Focal Tversky loss (FTL)
33
+ - **Task:** Probabilistic vessel segmentation in 7T MRA-ToF volumes - provides 10 segmentations for each input volume
34
+ - **Training dataset:** 7T MRA-ToF volumes, details mentioned in Sec. 4.1 of https://arxiv.org/pdf/2312.15686
35
+
36
+ ### Model Sources
37
+
38
+ <!-- Provide the basic links for the model. -->
39
+
40
+ - **Repository:** https://github.com/soumickmj/PULASki
41
+ - **Paper:** https://arxiv.org/abs/2312.15686
42
+
43
+ ## Citation
44
+
45
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
46
+
47
+ If you use this approach in your research or use codes from this repository or these weights, please cite the following in your publications:
48
+
49
+ **BibTeX:**
50
+
51
+ ```bibtex
52
+ @article{chatterjee2023pulaski,
53
+ title={PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation},
54
+ author={Chatterjee, Soumick and Gaidzik, Franziska and Sciarra, Alessandro and Mattern, Hendrik and Janiga, G{\'a}bor and Speck, Oliver and N{\"u}rnberger, Andreas and Pathiraja, Sahani},
55
+ journal={arXiv preprint arXiv:2312.15686},
56
+ year={2023}
57
+ }
58
+
59
+ ```
60
+
61
+ **APA:**
62
+
63
+ Chatterjee, S., Gaidzik, F., Sciarra, A., Mattern, H., Janiga, G., Speck, O., Nuernberger, A., & Pathiraja, S. (2023). PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation. arXiv preprint arXiv:2312.15686.